首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yamaotsu N  Suga M  Hirono S 《Biopolymers》2001,58(4):410-421
Trifluoperazine (TFP) has been widely studied in relation to its mode of binding and its inactivation of calmodulin (CaM). Most studies in solution have indicated that CaM has two high-affinity binding sites for TFP. The crystal structure of the 1:4 CaM-TFP complex (CaM-4TFP) shows that three TFP molecules bind to the C-domain of CaM, and that one TFP molecule binds to the N-domain. In contrast, the crystal structure of the 1:1 CaM-TFP complex (CaM-1TFP) shows that one TFP molecule binds to the C-domain. It has been thought that the binding of one TFP molecule to the C-domain is followed by binding to the N-domain. The crystal structure of the 1:2 CaM-TFP complex (CaM-2TFP), moreover, has recently been determined, showing that two TFP molecules bind to the C-domain. In order to determine the structure of the CaM-TFP complex and to clarify the interaction between CaM and TFP in solution, we performed a molecular dynamics simulation of the CaM-TFP complex in aqueous solution starting from the CaM-4TFP crystal structure. The obtained solution structure is very similar to the CaM-2TFP crystal structure. The computer simulation showed that the binding ability of the secondary binding site of the C-domain is higher than that of the primary binding site of the N-domain.  相似文献   

2.
The interaction between calmodulin (CaM) and peptide M13, its target binding sequence from skeletal muscle myosin light chain kinase, involves predominantly two sets of interactions, between the N-terminal target residues and the C-domain of calmodulin, and between the C-terminal target residues and the N-domain of calmodulin (Ikura M et al., 1992, Science 256:632-638). Using short synthetic peptides based on the two halves of the target sequence, the interactions with calmodulin and its separate C-domain have been studied by fluorescence and CD spectroscopy, calcium binding, and kinetic techniques. Peptide WF10 (residues 1-10 of M13) binds to CaM with Kd approximately 1 microM; peptide FW10 (residues 9-18 of M13, with Phe-17-->Trp substitution) binds to CaM with Kd approximately 100 microM. The effect of peptide WF10 on calcium binding to calmodulin produces a biphasic saturation curve, with marked enhancement of affinity for the binding of two calcium ions to the C-domain, forming a stable half-saturated complex, Ca2-CaM-peptide, and confirming the functional importance of the interaction of this sequence with the C-domain. Stopped-flow studies show that the EGTA-induced dissociation of WF10 from Ca4-CaM proceeds by a reversible relaxation mechanism from a kinetic intermediate state, also involving half-saturation of CaM, and the same mechanism is evident for the full target peptide. Interaction of the N-terminal target residues with the C-domain is energetically the most important component, but interaction of calmodulin with the whole target sequence is necessary to induce the full cooperative interaction of the two contiguous elements of the target sequence with both N- and C-domains of calmodulin. Thus, the interaction of calmodulin with the M13 sequence can be dissected on both a structural and kinetic basis into partial reactions involving intermediates comprising distinct regions of the target sequence. We propose a general mechanism for the calcium regulation of calmodulin-dependent enzyme activation, involving an intermediate complex formed by interaction of the calmodulin C-domain and the corresponding part of the target sequence. This intermediate species can function to regulate the overall calcium sensitivity of activation and to determine the affinity of the calmodulin target interaction.  相似文献   

3.
Ca(2+) binding to cardiac troponin C (cTnC) triggers contraction in heart muscle. In heart failure, myofilaments response to Ca(2+) are often altered and compounds that sensitize the myofilaments to Ca(2+) possess therapeutic value in this syndrome. One of the most potent and selective Ca(2+) sensitizers is the thiadiazinone derivative EMD 57033, which increases myocardial contractile function both in vivo and in vitro and interacts with cTnC in vitro. We have determined the NMR structure of the 1:1 complex between Ca(2+)-saturated C-domain of human cTnC (cCTnC) and EMD 57033. Favorable hydrophobic interactions between the drug and the protein position EMD 57033 in the hydrophobic cleft of the protein. The drug molecule is orientated such that the chiral group of EMD 57033 fits deep in the hydrophobic pocket and makes several key contacts with the protein. This stereospecific interaction explains why the (-)-enantiomer of EMD 57033 is inactive. Titrations of the cCTnC.EMD 57033 complex with two regions of cardiac troponin I (cTnI(34-71) and cTnI(128-147)) reveal that the drug does not share a common binding epitope with cTnI(128-147) but is completely displaced by cTnI(34-71). These results have important implications for elucidating the mechanism of the Ca(2+) sensitizing effect of EMD 57033 in cardiac muscle contraction.  相似文献   

4.
BACKGROUND: Interactions between CXC chemokines (e.g. interleukin-8, IL-8) and their receptors (e.g. CXCR-1) have a key role in host defense and disease by attracting and upregulating neutrophils to sites of inflammation. The transmembrane nature of the receptor impedes structure-based understanding of ligand interactions. Linear peptides based on the N-terminal, extracellular portion of the receptor CXCR-1 do bind to IL-8, however, and inhibit the binding of IL-8 to the full-length receptor. RESULTS: The NMR solution structure of the complex formed between IL-8 and one such receptor-based peptide indicates that a cleft between a loop and a beta hairpin constitute part of the receptor interaction surface on IL-8. Nine residues from the C terminus of the receptor peptide (corresponding to Pro21-Pro29 of CXCR-1) occupy the cleft in an extended fashion. Intermolecular contacts are mostly hydrophobic and sidechain mediated. CONCLUSIONS: The results offer the first details at an atomic level of the interaction between a chemokine and its receptor. Consideration of other biochemical data allow extrapolation to a model for the interaction of IL-8 with the full-length receptor. In this model, the heparin-binding residues of IL-8 are exposed, thereby allowing presentation of the chemokine from endothelial cell-surface glycosaminoglycans. This first glimpse of how IL-8 binds to its receptor provides a foundation for the structure-based design of chemokine antagonists.  相似文献   

5.
Computer simulation of the conformations of short antigenic peptides (5-10 residues) either free or bound to their receptor, the major histocompatibility complex (MHC)-encoded glycoprotein H-2 Ld, was employed to explain experimentally determined differences in the antigenic activities within a set of related peptides. Starting for each sequence from the most probable conformations disclosed by a pattern-recognition technique, several energy-minimized structures were subjected to molecular dynamics simulations (MD) either in vacuo or solvated by water molecules. Notably, antigenic potencies were found to correlate to the peptides propensity to form and maintain an overall alpha-helical conformation through regular i,i + 4 hydrogen bonds. Accordingly, less active or inactive peptides showed a strong tendency to form i,i + 3 hydrogen bonds at their N-terminal end. Experimental data documented that the C-terminal residue is critical for interaction of the peptide with H-2 Ld. This finding could be satisfactorily explained by a 3-D Q.S.A.R. analysis postulating interactions between ligand and receptor by hydrophobic forces. A 3-D model is proposed for the complex between a high-affinity nonapeptide and the H-2 Ld receptor. First, the H-2 Ld molecule was built from X-ray coordinates of two homologous proteins: HLA-A2 and HLA-Aw68, energy-minimized and studied by MD simulations. With HLA-A2 as template, the only realistic simulation was achieved for a solvated model with minor deviations of the MD mean structure from the X-ray conformation. Water simulation of the H-2 Ld protein in complex with the antigenic nonapeptide was then achieved with the template-derived optimal parameters. The bound peptide retains mainly its alpha-helical conformation and binds to hydrophobic residues of H-2 Ld that correspond to highly polymorphic positions of MHC proteins. The orientation of the nonapeptide in the binding cleft is in accordance with the experimentally determined distribution of its MHC receptor-binding residues (agretope residues). Thus, computer simulation was successfully employed to explain functional data and predicts alpha-helical conformation for the bound peptide.  相似文献   

6.
7.
8.
Fibrinogen-NDSK complex is a model of protofibril having some features of the fibrin polymer structure. This complex has been studied for its ability to stimulate the plasminogen activation by t-PA. The fibrinogen-NDSK complex have increased the rate of plasminogen activation by t-PA as compared to fibrinogen or NDSK taken separately. This acceleration had slow and fast phases. Lys-plasminogen was activated more effectively as compared to glu-plasminogen. The kinetic parameters of glu- and lys-plasminogen activation at fast phase were: Km--0.18 and 0.015 mu/M, Kkat--0.27 and 0.06 s-1, respectively. Fibrinogen X2--fragments, deprived of alpha C-domains and NH2-end peptides of bB-chains, formed complexes with NDSK, which however did not stimulate the plasminogen activation by t-PA. These findings have shown that the fibrinogen-NDSK complex is an effective stimulator of the plasminogen activation by t-PA. The activating ability of the complex may be due to structures formed in the course of fibrinogen and NDSK polymerization as a result of alpha C-domain interaction.  相似文献   

9.
The Eph family of receptor tyrosine kinases has been implicated in tumorigenesis as well as pathological forms of angiogenesis. Understanding how to modulate the interaction of Eph receptors with their ephrin ligands is therefore of critical interest for the development of therapeutics to treat cancer. Previous work identified a set of 12-mer peptides that displayed moderate binding affinity but high selectivity for the EphB2 receptor. The SNEW antagonistic peptide inhibited the interaction of EphB2 with ephrinB2, with an IC50 of approximately 15 microm. To gain a better molecular understanding of how to inhibit Eph/ephrin binding, we determined the crystal structure of the EphB2 receptor in complex with the SNEW peptide to 2.3-A resolution. The peptide binds in the hydrophobic ligand-binding cleft of the EphB2 receptor, thus competing with the ephrin ligand for receptor binding. However, the binding interactions of the SNEW peptide are markedly different from those described for the TNYL-RAW peptide, which binds to the ligand-binding cleft of EphB4, indicating a novel mode of antagonism. Nevertheless, we identified a conserved structural motif present in all known receptor/ligand interfaces, which may serve as a scaffold for the development of therapeutic leads. The EphB2-SNEW complex crystallized as a homodimer, and the residues involved in the dimerization interface are similar to those implicated in mediating tetramerization of EphB2-ephrinB2 complexes. The structure of EphB2 in complex with the SNEW peptide reveals novel binding determinants that could serve as starting points in the development of compounds that modulate Eph receptor/ephrin interactions and biological activities.  相似文献   

10.
Murase T  Iio T 《Biochemistry》2002,41(5):1618-1629
Ca(2+)-induced complex formation between calmodulin (CaM) and mastoparanX (MasX) was studied by a fluorescence spectroscopy and by a stopped-flow method. The measurements of the fluorescence anisotropy in the presence of calcium and the fluorescence titration with Ca(2+) revealed that the N- and C-domains of CaM bound cooperatively MasX, while the tryptic fragments of CaM (TR(1)C, 1-77 and TR(2)C, 78-148) bound independently MasX. The Trp-fluorescence stopped-flow experiments revealed that the Ca(2+)-induced binding of CaM and MasX was composed of two processes: one was a rapid binding of the N-domain of CaM to MasX, which was induced by the rapid Ca(2+) binding to the N-sites of CaM. The other was a slow biphasic process. Its fast phase was the binding of the C-domain of CaM to MasX, which was induced by the slow Ca(2+) binding to the C-sites. Interestingly, the kinetics of the slow process varied with the Ca(2+) concentrations. At the low Ca(2+) concentrations, its rate constant increased to around 20 s(-1) as the Ca(2+) concentration increased. At the high Ca(2+) concentrations, the Ca(2+)-induced binding of the C-domain of CaM to MasX proceeded at a constant rate around 20 s(-1). This suggested an existence of a rate-limiting step for the Ca(2+)-induced binding of the C-domain of CaM to MasX at the high Ca(2+) concentrations. The slow phase of the slow process may be a rearrangement of the CaM-MasX complex. These results led to our model of a molecular kinetic mechanism of the Ca(2+)-induced complex formation between CaM and MasX.  相似文献   

11.
SecA, the dimeric ATPase subunit of protein translocase, contains a DEAD helicase catalytic core that binds to a regulatory C-terminal domain. We now demonstrate that IRA1, a conserved helix-loop-helix structure in the C-domain, controls C-domain conformation through direct interdomain contacts. C-domain conformational changes are transmitted to the DEAD motor and alter its conformation. These interactions establish DEAD motor/C-domain conformational cross-talk that requires a functional IRA1. IRA1-controlled binding/release cycles of the C-domain to the DEAD motor couple this cross-talk to protein translocation chemistries, i.e. DEAD motor affinities for ligands (nucleotides, preprotein signal peptides, and SecYEG, the integral membrane component of translocase) and ATP turnover. IRA1-mediated global co-ordination of SecA catalysis is essential for protein translocation.  相似文献   

12.
Calcium-saturated calmodulin (CaM) directly activates CaM-dependent protein kinase I (CaMKI) by binding to a region in the C-terminal regulatory sequence of the enzyme to relieve autoinhibition. The structure of CaM in a high-affinity complex with a 25-residue peptide of CaMKI (residues 294-318) has been determined by X-ray crystallography at 1.7 A resolution. Upon complex formation, the CaMKI peptide adopts an alpha-helical conformation, while changes in the CaM domain linker enable both its N- and C-domains to wrap around the peptide helix. Target peptide residues Trp-303 (interacting with the CaM C-domain) and Met-316 (with the CaM N-domain) define the mode of binding as 1-14. In addition, two basic patches on the peptide form complementary charge interactions with CaM. The CaM-peptide affinity is approximately 1 pM, compared with 30 nM for the CaM-kinase complex, indicating that activation of autoinhibited CaMKI by CaM requires a costly energetic disruption of the interactions between the CaM-binding sequence and the rest of the enzyme. We present biochemical and structural evidence indicating the involvement of both CaM domains in the activation process: while the C-domain exhibits tight binding toward the regulatory sequence, the N-domain is necessary for activation. Our crystal structure also enables us to identify the full CaM-binding sequence. Residues Lys-296 and Phe-298 from the target peptide interact directly with CaM, demonstrating overlap between the autoinhibitory and CaM-binding sequences. Thus, the kinase activation mechanism involves the binding of CaM to residues associated with the inhibitory pseudosubstrate sequence.  相似文献   

13.
The interaction between IscU and HscB is critical for successful assembly of iron-sulfur clusters. NMR experiments were performed on HscB to investigate which of its residues might be part of the IscU binding surface. Residual dipolar couplings ( (1) D HN and (1) D CalphaHalpha) indicated that the crystal structure of HscB [Cupp-Vickery, J. R., and Vickery, L. E. (2000) Crystal structure of Hsc20, a J-type cochaperone from Escherichia coli, J. Mol. Biol. 304, 835-845] faithfully represents its solution state. NMR relaxation rates ( (15)N R 1, R 2) and (1)H- (15)N heteronuclear NOE values indicated that HscB is rigid along its entire backbone except for three short regions which exhibit flexibility on a fast time scale. Changes in the NMR spectrum of HscB upon addition of IscU mapped to the J-domain/C-domain interface, the interdomain linker, and the C-domain. Sequence conservation is low in the interface and in the linker, and NMR changes observed for these residues likely result from indirect effects of IscU binding. NMR changes observed in the conserved patch of residues in the C-domain (L92, M93, L96, E97, E100, E104, and F153) were suggestive of a direct interaction with IscU. To test this, we replaced several of these residues with alanine and assayed for the ability of HscB to interact with IscU and to stimulate HscA ATPase activity. HscB(L92A,M93A,F153A) and HscB(E97A,E100A,E104A) both showed decreased binding affinity for IscU; the (L92A,M93A,F153A) substitution also strongly perturbed the allosteric interaction within the HscA.IscU.HscB ternary complex. We propose that the conserved patch in the C-domain of HscB is the principal binding site for IscU.  相似文献   

14.
Structural analogs of recombinant human insulin-like growth factor-I (IGF-I), with alterations to each of the B, C, A, and D domains, have been tested for their ability to form binary complexes with IGF-binding protein-3 (IGFBP-3) and ternary complexes with IGFBP-3 and the acid-labile subunit (alpha-subunit). Two functionally distinct regions of IGF-I have been identified. The first, involving residues 3 and 4 and the alpha-helix between residues 8 and 18 of the B-domain, as well as residues 49-51 in the A-domain, appears important for IGFBP-3 binding, such that substitution of these residues results in decreased binary complex available for alpha-subunit binding. The second region, distal to the IGFBP-3-binding epitope and primarily involving the D-domain and B-domain near residue 24, with some involvement of the C-domain, appears slightly inhibitory to binary complex formation, such that analogs with a truncated D-domain or with a Gly4 bridge substituted for the C-domain show enhanced binding to IGFBP-3. However, binary complexes formed from these analogs bind the alpha-subunit with reduced affinity, the effect being most marked when substitution of the C-domain, or replacement of Tyr24, is superimposed on D-domain truncation. It is concluded that although the alpha-subunit does not itself bind IGF-I, its interaction with IGFBP-3 in the ternary complex is dependent on structural determinants on IGF-I distal to the IGFBP-3 binding domain.  相似文献   

15.
Major histocompatibility (MHC) Class II cell surface proteins present antigenic peptides to the immune system. Class II structures in complex with peptides but not in the absence of peptide are known. Comparative molecular dynamics (MD) simulations of a Class II protein (HLA-DR3) with and without CLIP (invariant chain-associated protein) peptide were performed starting from the CLIP-bound crystal structure. Depending on the protonation of acidic residues in the P6 peptide-binding pocket the simulations stayed overall close to the start structure. The simulations without CLIP showed larger conformational fluctuations especially of alpha-helices flanking the binding cleft. Largest fluctuations without CLIP were observed in a helical segment near the peptide C-terminus binding region matching a segment recognized by antibodies specific for empty Class II proteins. Simulations on a Val86Tyr mutation that fills the peptide N-terminus binding P1 pocket or of a complex with a CLIP fragment (dipeptide) bound to P1 showed an unexpected long range effect. In both simulations the mobility not only of P1 but also of the entire binding cleft was reduced compared to simulations without CLIP. It correlates with the experimental finding that the CLIP fragment binding to P1 is sufficient to prevent antibody recognition specific for the empty form at a site distant from P1. The results suggest a mechanism how a local binding event of small peptides or of an exchange factor near P1 may promote peptide binding and exchange through a long range stabilization of the whole binding cleft in a receptive (near bound) conformation.  相似文献   

16.
SecA is the preprotein translocase ATPase subunit and a superfamily 2 (SF2) RNA helicase. Here we present the 2 A crystal structures of the Escherichia coli SecA homodimer in the apo form and in complex with ATP, ADP and adenosine 5'-[beta,gamma-imido]triphosphate (AMP-PNP). Each monomer contains the SF2 ATPase core (DEAD motor) built of two domains (nucleotide binding domain, NBD and intramolecular regulator of ATPase 2, IRA2), the preprotein binding domain (PBD), which is inserted in NBD and a carboxy-terminal domain (C-domain) linked to IRA2. The structures of the nucleotide complexes of SecA identify an interfacial nucleotide-binding cleft located between the two DEAD motor domains and residues critical for ATP catalysis. The dimer comprises two virtually identical protomers associating in an antiparallel fashion. Dimerization is mediated solely through extensive contacts of the DEAD motor domains leaving the C-domain facing outwards from the dimerization core. This dimerization mode explains the effect of functionally important mutations and is completely different from the dimerization models proposed for other SecA structures. The repercussion of these findings on translocase assembly and catalysis is discussed.  相似文献   

17.
Melittin is a cytolytic peptide whose biological activity is lost upon binding to a six-residue peptide, Ac-IVIFDC-NH(2), with which it forms a highly insoluble complex. As a result, the structural analysis of the interaction between the two peptides is difficult. Solid-state NMR spectroscopy was used to study the interaction between melittin and the peptide inhibitor. Location of the binding site in the melittin-inhibitor complex was determined using lanthanide ions, which quench NMR resonances from molecular sites that are in close proximity to the unique ion binding site. Our results indicated that the inhibitor binding site in melittin is near Leu13, Leu16 and Ile17, but not near Leu6 or Val8. On the basis of these data we propose that the inhibitor binds to melittin in the vicinity of Ala15 to Trp19 and prevents insertion of melittin into cell membranes by disrupting the helical structure. Supporting evidence for this model was produced by determining the distance, using rotational resonance NMR, between the [1-(13)C] of Leu13 in melittin and the [3-(13)C] of Phe4 in the inhibitor.  相似文献   

18.
Cardiac troponin C is the Ca2+-dependent switch for heart muscle contraction. Troponin C is associated with various other proteins including troponin I and troponin T. The interaction between the subunits within the troponin complex is of critical importance in understanding contractility. Following a Ca2+ signal to begin contraction, the inhibitory region of troponin I comprising residues Thr128-Arg147 relocates from its binding surface on actin to troponin C, triggering movement of troponin-tropomyosin within the thin filament and thereby freeing actin-binding site(s) for interactions with the myosin ATPase of the thick filament to generate the power stroke. The structure of calcium-saturated cardiac troponin C (C-domain) in complex with the inhibitory region of troponin I was determined using multinuclear and multidimensional nuclear magnetic resonance spectroscopy. The structure of this complex reveals that the inhibitory region adopts a helical conformation spanning residues Leu134-Lys139, with a novel orientation between the E- and H-helices of troponin C, which is largely stabilized by electrostatic interactions. By using isotope labeling, we have studied the dynamics of the protein and peptide in the binary complex. The structure of this inhibited complex provides a framework for understanding into interactions within the troponin complex upon heart contraction.  相似文献   

19.
Calmodulin (CaM), a Ca(2+)-binding protein, is a well-known regulator of various cellular functions. One of the targets of CaM is metabotropic glutamate receptor 7 (mGluR7), which serves as a low-pass filter for glutamate in the pre-synaptic terminal to regulate neurotransmission. Surface plasmon resonance (SPR), circular dichroism (CD) spectroscopy and nuclear magnetic spectroscopy (NMR) were performed to study the structure of the peptides corresponding to the CaM-binding domain of mGluR7 and their interaction with CaM. Unlike well-known CaM-binding peptides, mGluR7 has a random coil structure even in the presence of trifluoroethanol. Moreover, NMR data suggested that the complex between Ca(2+)/CaM and the mGluR7 peptide has multiple conformations. The mGluR7 peptide has been found to interact with CaM even in the absence of Ca(2+), and the binding is directed toward the C-domain of apo-CaM rather than the N-domain. We propose a possible mechanism for the activation of mGluR7 by CaM. A pre-binding occurs between apo-CaM and mGluR7 in the resting state of cells. Then, the Ca(2+)/CaM-mGluR7 complex is formed once Ca(2+) influx occurs. The weak interaction at lower Ca(2+) concentrations is likely to bind CaM to mGluR7 for the fast complex formation in response to the elevation of Ca(2+) concentration.  相似文献   

20.
The molecular mechanism by which DNA-binding proteins find their specific binding sites is still unclear. To gain insights into structural and energetic elements of this mechanism, we used the crystal structure of the nonspecific BamHI-DNA complex as a template to study the dominant electrostatic interaction in the nonspecific association of protein with DNA, and the possible sliding pathways that could be sustained by such an interaction. Based on calculations using the nonlinear Poisson-Boltzmann method and Brownian dynamics, a model is proposed for the initial nonspecific binding of BamHI to B-form DNA that differs from that seen in the crystal structure of the nonspecific complex. The model is electrostatically favorable, and the salt dependence as well as other thermodynamic parameters calculated for this model are in good agreement with experimental results. Several residues in BamHI are identified for their important contribution to the energy in the nonspecific binding model, and specific mutagenesis experiments are proposed to test the model on this basis. We show that a favorable sliding pathway of the protein along DNA is helical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号