首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorus uptake and release by periphyton mats were quantified in the Everglades Nutrient Removal Project (ENRP) to evaluate the potential for periphyton P removal. Short-term P uptake rates were determined by incubating cyanobacteria (Oscillatoria princeps and Shizothrix calcicola) and Chlorophycean (primarily Rhizoclonium spp.) algal mat samples for 0.5–2 h under ambient conditions in BOD bottles spiked with soluble reactive P (SRP). Cyanobacterial mats removed P more than twice as fast (80–164 μg P h−1 g−1 AFDM) as Chlorophycean mats (33–61 μg P h−1 g−1 AFDM) during these incubations. In a longer term study, fiberglass cylinders were used to enclose 1.8 m2 plots within the wetland and were dosed weekly for 7 weeks with: (1) no nutrients; (2) SRP (0.25 g P m−2 week−1); or (3) SRP plus nitrate (0.42 g N m−2 week−1) and ammonium (0.83 g N m−2 week−1). Phosphorus uptake rates by this periphyton assemblage, which was dominated by the chlorophytes Stigeoclonium spp. and Oedogonium spp., were measured weekly and were similar among nutrient treatments on most dates, indicating that the algal storage compartment for P was not saturated despite repeated P additions. Decomposition rates and P loss by cyanobacteria and Chlorophycean mats were determined by measuring biomass loss and SRP release in darkened BOD bottles over 28–42 day periods under anaerobic and aerobic conditions. First-order aerobic and anaerobic decomposition rates for cyanobacterial mats (k = 0.1095 and 0.1408 day−1, respectively) were 4–20-fold higher than rates for Chlorophycean mats (k = 0.0066 and 0.0250 day−1, respectively) and cyanobacteria released considerably more P back to the water column. Our findings suggest that periphyton can be an important short-term sink for P in treatment wetlands and that retention is strongly affected by the taxonomic composition of the periphyton assemblage.  相似文献   

2.
We measured nitrous oxide (N2O), dinitrogen (N2), methane (CH4), and carbon dioxide (CO2) fluxes in horizontal and vertical flow constructed wetlands (CW) and in a riparian alder stand in southern Estonia using the closed chamber method in the period from October 2001 to November 2003. The replicates’ average values of N2O, N2, CH4 and CO2 fluxes from the riparian gray alder stand varied from −0.4 to 58 μg N2O-N m−2 h−1, 0.02–17.4 mg N2-N m−2 h−1, 0.1–265 μg CH4-C m−2 h−1 and 55–61 mg CO2-C m−2 h−1, respectively. In horizontal subsurface flow (HSSF) beds of CWs, the average N2 emission varied from 0.17 to 130 and from 0.33 to 119 mg N2-N m−2 h−1 in the vertical subsurface flow (VSSF) beds. The average N2O-N emission from the microsites above the inflow pipes of the HSSF CWs was 6.4–31 μg N2O-N m−2 h−1, whereas the outflow microsites emitted 2.4–8 μg N2O-N m−2 h−1. In VSSF beds, the same value was 35.6–44.7 μg N2O-N m−2 h−1. The average CH4 emission from the inflow and outflow microsites in the HSSF CWs differed significantly, ranging from 640 to 9715 and from 30 to 770 μg CH4-C m−2 h−1, respectively. The average CO2 emission was somewhat higher in VSSF beds (140–291 mg CO2-C m−2 h−1) and at the inflow microsites of HSSF beds (61–140 mg CO2-C m−2 h−1). The global warming potential (GWP) from N2O and CH4 was comparatively high in both types of CWs (4.8 ± 9.8 and 6.8 ± 16.2 t CO2 eq ha−1 a−1 in the HSSF CW 6.5 ± 13.0 and 5.3 ± 24.7 t CO2 eq ha−1 a−1 in the hybrid CW, respectively). The GWP of the riparian alder forest from both N2O and CH4 was relatively low (0.4 ± 1.0 and 0.1 ± 0.30 t CO2 eq ha−1 a−1, respectively), whereas the CO2-C flux was remarkable (3.5 ± 3.7 t ha−1 a−1). The global influence of CWs is not significant. Even if all global domestic wastewater were treated by wetlands, their share of the trace gas emission budget would be less than 1%.  相似文献   

3.
Straightened channels and altered and drained adjacent riparian wetlands have adversely impacted streams and rivers throughout the US Midwest. This research investigated the biological connection and water quality of a 0.07 ha diversion wetland and adjacent stream at the Olentangy River Wetland Research Park in central Ohio. Before the flowthrough conditions were established, we demonstrated with mark and recapture techniques that the wetland already was a biorefuge for fish under extreme conditions; two species (Centrarchidae) captured in the stream before a total drawdown of the stream were found in the wetland a year later. In addition, water at the bottom remained at around 4 °C over the winter likely due to groundwater input, which possibly provided a warmer shelter for fish. Stream water quality of the lower section, downstream of the wetland outlet, generally improved with hydrologic pulsing in spring after flow-through reconnection due to the trapping of nutrients in the wetland. Mean removal per flood pulse for nitrate-nitrite, total nitrogen (TN), soluble reactive phosphorus (SRP), total phosphorus (TP) were 1.81 g-N m−2 per pulse, 1.02 g-N m−2 per pulse, 0.014 g-P m−2 per pulse, and 0.004 g-P m−2 per pulse, respectively. The wetland exported 2.8 g-C m−2 per pulse of organic carbon. A greater attenuation of NO3 and TP occurred in the marshy outlet channel section of the wetland than the open water section. The diversion wetland successfully removed nitrate and phosphorus during storm pulses in spring. Similar designs should be applied to other locations to examine their function under different climatic and hydrological conditions.  相似文献   

4.
A coastal wetland along Lake Erie (Ohio, U.S.A.) was studied to determine hydrologic and phosphorus budgets and spatial and temporal variation of phosphorus and related chemical parameters. The wetland was influenced by changing Lake Erie water levels, seiches, shifting shoreline sediments, and watershed inflow during a year of severe drought. The water budget for a 7-month period (March – September, 1988) had average inflow of 15 200 m3 day–1 from the watershed and 3.5 m3 day–1 from Lake Erie. The wetland increased in volume by 700 m3 day–1 despite a drought that resulted in 80% more evapotranspiration than rainfall as a barrier beach isolated the wetland from Lake Erie for 77% of the study period. Conductivity decreased by 34% as water flowed through the wetland and turbidity and total suspended solids were variable and statistically similar at inflow and outflow. Average total phosphorus concentrations in the inflow and outflow were also similar (247 and 248 µg P l–1 respectively) although total soluble phosphorus and soluble reactive phosphorus decreased significantly (=0.05) from inflow to outflow (averages 94 to 45 µg P l–1 and 7.5 to 4.0 µg P l–1 respectively). Nutrient budgets from field data estimate a retention of 36% of the phosphorus, presumably in the sediments (0.8 mg P m–2 day–1). A general nutrient retention model, an estimated deposition rate from a sediment core and a simulation model predicted higher mass retention of phosphorus but similar percentage retention.SommaireUn marecage qui côtoie le lac Erie (USA) a servi de site expérimental pour en déterminer les budgets d'eau et de phosphore, de même que pour la variation spatiale et temporelle du phosphore et d'autres facteurs chimiques. Le marécage a été influencé par: niveaux d'eau qui changeaient; seiches; sédiments mouvants du littoral; et afflux de la ligne de partage des eaux dans une année de grande sécheresse. Le budget d'eau dans une période de 7 mois (mars–septembre 1988) montre un afflux de 15 200 m3 jour–1 de la ligne de partage, et 3.5 m3 jour–1 du lac Erie. Le volume du marécage a augmenté par 700 m3 jour–1 malgré une sécheresse qui a produit plus d'évapotranspiration (80%) que de pluie pendant qu'une plage-obstacle a isolé le marecage du lac Erie pendant 77% de la période d'observation. La conductivité a diminué par 34% pendant que l'eau coulait, et la turbidité et les TSS ont varié, tout en démontrant des statistiques similaires à l'afflux et au déversement. Les moyennes pour les concentrations du total du phosphore à l'afflux et au déversement ont été similaires (247 and 248 µg P l–1), quoique le TSP et le SRP ont diminué (=0.05) de l'afflux au déversement (donant des moyennes de 94 à 45 µg P l–1 et de 7.5 à 4.0 µg P l'–1). Les budgets de substances nutritives pour les données suggèrent une reténtion de 36% du phosphore, évidemment dans les sédiments (0.8 mg P m–2 jour–1). Un modèle pour la rétention des nutrients, un taux de déposition, estimé par un noyau de sédiments, et une simulation avaient prédit un plus grand taux de rétention de phosphore, mais un pourcentage similaire pour la rétention.From a paper presented at the Third International Wetlands Conference, 19–23 September, 1988, University of Rennes, France.  相似文献   

5.
Primary Production of Phytoplankton in a Strongly Stratified Temperate Lake   总被引:7,自引:7,他引:0  
Lake Verevi (12.6 ha, maximum depth 11.0 m, mean depth 3.6 m) is a strongly eutrophic and stratified lake. Planktothrix agardhii is the most characteristic phytoplankton species in summer and autumn, while photosynthesizing sulphur bacteria can occur massively in the metalimnion. Primary production (PP) and chlorophyll a concentration (Chl a) were seasonally studied in 1991, 1993, 2000, and 2001. Vertical distribution of PP was rather complex, having usually two peaks, one at or near the surface (0–1 m), and another deeper (at 3–7 m) in the metalimnion. The values of dark fixation of CO2 in the metalimnion were in most cases higher than those in the upper water layer. Considering the average daily PP 896 mg C m−2 and yearly PP 162 mg C m−2, Secchi depth 2.34 m, and epilimnetic concentrations of chlorophyll a (19.6 mg m−3), total nitrogen and total phosphorus (TP, 52 mg m−3) in 2000, L. Verevi is a eutrophic lake of a ‘good’ status. Considering the total amounts of nutrients stored in the hypolimnion, the average potential concentrations in the whole water column could achieve 1885 mg m−3 of TN and 170 mg m−3 of TP reflecting hypertrophic conditions and a ‚bad’ status. Improvement of the epilimnetic water quality from the 1990s to the 2000s may have resulted from incomplete spring mixing and might not reflect the real improvement. A decreased nutrient concentration in the epilimnion has supported the establishment of a ‘clear epilimnion state’ allowing light to penetrate into the nutrient-rich metalimnion and sustaining a high production of cyanobacteria and phototrophic sulphur bacteria.  相似文献   

6.
This study reports on the response of a tidal, freshwater forested wetland ecosystem to long-term input of secondarily treated municipal effluent from the City of Mandeville, LA. Measurements of hydrology, nutrients, and aboveground net primary productivity were made from September 1998 through March 2002. Accretion measurements were made in October 2000 and October 2004. The major hydrologic inputs to the system were the effluent, precipitation, and back water flooding from Lake Pontchartrain. Nutrient levels were generally low except in the immediate vicinity of the outfall. Mean net primary production of the freshwater forest system was significantly higher downstream of the effluent discharge (1202 g m−2 yr−1) compared to the control site (799 g m−2 yr−1). Downstream of the outfall, accretion rates were double the rate of relative sea level rise in the area. Removal efficiencies of N and P were as high as 75% and 95%, respectively. The relatively constant flow of secondarily treated municipal effluent buffered the downstream area from salinity intrusion during a region-wide drought. Re-direction of nutrient-enhanced effluents from open water bodies to wetland ecosystems can maintain plant productivity, sequester carbon, and maintain coastal wetland elevations in response to sea-level rise in addition to improving overall surface water quality, reducing energy use, and increasing financial savings.  相似文献   

7.
A diversion of Mississippi River water into Lake Pontchartrain, Louisiana, USA by way of the Bonnet Carre Spillway has been proposed as a restoration technique to help offset regional wetland loss. An experimental diversion of Mississippi River water into Lake Pontchartrain was carried out in April 1994 to monitor the fate of nutrients and sediments in the spillway and Lake Pontchartrain. Approximately 6.4×108 m3 of Mississippi River water was diverted into Lake Pontchartrain over 42 days. As water passed through the Bonnet Carre Spillway, there were reductions in total suspended sediment concentrations of 82–83%, nitrite+nitrate (NOx) of 28–42%, in total nitrogen (TN) of 26–30%, and in total phosphorus (TP) of 50–59%. 3.9±1.1 cm of accretion was measured in the spillway. Nutrient concentrations at the freshwater plume edge in Lake Pontchartrain compared to the Mississippi River were lower for NOx (44–81%), TN (37–57%), and TP (40–70%), and generally higher for organic nitrogen (−7–57%). The Si:N ratio generally increased and the N:P ratio decreased from the river to the plume edge. Nutrient stoichiometric ratios indicate water at the plume edge was not silicate limited, suggesting conditions favoring diatomic phytoplankton.  相似文献   

8.
Most wetlands of the Mississippi deltaic plain are isolated from riverine input due to flood control levees along the Mississippi River. These levees have altered hydrology and ecology and are a primary cause of massive wetland loss in the delta. River water is being re-introduced into coastal basins as part of a large-scale ecological engineering effort to restore the delta. We quantified freshwater, nitrogen, and phosphorus inputs to the Breton Sound Estuary for three climatically different years (2000, 2001, and 2002). Water budgets included precipitation, potential evapotranspiration, the diversion, stormwater pumps, and groundwater. Precipitation contributed 48–57% of freshwater input, while the diversion accounted for 33–48%. Net groundwater input accounted for less than 0.05% of freshwater inputs. Inputs of ammonium (NH4-N), nitrate (NO3-N), total nitrogen (TN), and total phosphorus (TP) were determined for each of the water sources. Atmospheric deposition was the most important input of NH4-N (57–62% or 1.44 × 105–2.32 × 105 kg yr−1) followed by the diversion. The diversion was the greatest source of NO3-N (67–83%, 7.78 × 105–1.64 × 106 kg yr−1) and TN (60–71%). The diversion contributed 41–60% of TP input (1.17 × 105–2.32 × 105 kg yr−1). Annual loading rates of NH4-N and NO3-N were 0.17–0.27 and 1.2–2.3 g N m−2 yr−1, respectively, for the total basin indicating strong retention of nitrogen in the basin. Nitrogen retention through denitrification and burial was estimated for the upper basin.  相似文献   

9.
Hydrological restoration of the Southern Everglades will result in increased freshwater flow to the freshwater and estuarine wetlands bordering Florida Bay. We evaluated the contribution of surface freshwater runoff versus atmospheric deposition and ground water on the water and nutrient budgets of these wetlands. These estimates were used to assess the importance of hydrologic inputs and losses relative to sediment burial, denitrification, and nitrogen fixation. We calculated seasonal inputs and outputs of water, total phosphorus (TP) and total nitrogen (TN) from surface water, precipitation, and evapotranspiration in the Taylor Slough/C-111 basin wetlands for 1.5 years. Atmospheric deposition was the dominant source of water and TP for these oligotrophic, phosphorus-limited wetlands. Surface water was the major TN source of during the wet season, but on an annual basis was equal to the atmospheric TN deposition. We calculated a net annual import of 31.4 mg m–2 yr–1 P and 694 mg m–2 yr–1N into the wetland from hydrologic sources. Hydrologic import of P was within range of estimates of sediment P burial (33–70 mg m–2 yr–1 P), while sediment burial of N (1890–4027 mg m–2 yr–1 N) greatly exceeded estimated hydrologic N import. High nitrogen fixation rates or an underestimation of groundwater N flux may explain the discrepancy between estimates of hydrologic N import and sediment N burial rates.  相似文献   

10.
Predictive models for phosphorus retention in wetlands   总被引:1,自引:0,他引:1  
The potential of wetlands to efficiently remove (i.e., act as a nutrient sink) or to transform nutrients like phosphorus under high nutrient loading has resulted in their consideration as a cost-effective means of treating wastewater on the landscape. Few predictive models exist which can accurately assess P retention capacity. An analysis of the north American data base (NADB) allowed us to develop a mass loading model that can be used to predict P storage and effluent concentrations from wetlands. Phosphorus storage in wetlands is proportional to P loadings but the output total phosphorus (TP) concentrations increase exponentially after a P loading threshold is reached. The threshold P assimilative capacity based on the NADB and a test site in the Everglades is approximately 1 g m–2 yr–1. We hypothesize that once loadings exceed 1 g m–2 yr–1 and short-term mechanisms are saturated, that the mechanisms controlling the uptake and storage of P in wetlands are exceeded and effluent concentrations of TP rise exponentially. We propose a One Gram Rule for freshwater wetlands and contend that this loading is near the assimilative capacity of wetlands. Our analysis further suggests that P loadings must be reduced to 1 g m–2 yr–1 or lower within the wetland if maintaining long-term low P output concentrations from the wetlands is the central goal. A carbon based phosphorus retention model developed for peatlands and tested in the Everglades of Florida provided further evidence of the proposed One Gram Rule for wetlands. This model is based on data from the Everglades areas impacted by agricultural runoff during the past 30 years. Preliminary estimates indicate that these wetlands store P primarily as humic organic-P, insoluble P, and Ca bound P at 0.44 g m–2 yr–1 on average. Areas loaded with 4.0 g m–2 yr–1 (at water concentrations>150 g·L–1 TP) stored 0.8 to 0.6 g m–2 yr–1 P, areas loaded with 3.3 g m–2 yr–1 P retained 0.6 to 0.4 g m–2 yr–1 P, and areas receiving 0.6 g m–2 yr–1 P retained 0.3 to 0.2 g m–2 yr–1. The TP water concentrations in the wetland did not drop below 50 g·L–1 until loadings were below 1 g m2 yr–1 P.  相似文献   

11.
The effect of hydroperiod on nutrient removal efficiency from simulated wastewater was investigated in replicate wetland mesocosms (area, 2 m2, planted with Scirpus californicus). Alternate draining and flooding of sediments (pulsed discharge) increased nutrient removal efficiency compared to the continuous-flow “control”. Average PO43− removal efficiency was 20–30% higher in wetland mesocosms that drained twice daily compared to the control. Inorganic N removal efficiency was less affected than phosphate removal by hydroperiod variation. At the higher NH4+ loading rate (1.83 g N m−2 day−1), inorganic N removal efficiency was consistently 5–20% higher in pulsed-discharge wetland mesocosms than in the control. At the lower NH4+ loading rate (0.9 g N m −2 day −1), pulsed-discharge hydrology had no effect on inorganic N removal efficiency. Twice-daily drainage exhibited average inorganic N removal efficiencies of 96% (lower N loading rate) and 87% (higher N loading) and average phosphate removal efficiencies of 81% (lower P loading) and 90% (higher P loading). Mass balance data from the continuous-flow treatment revealed that the aquatic macrophyte Scirpus californicus was the most important nutrient sink, assimilating 50% of the NH4+ and PO43− supply. The high plant productivity in the mesocosms (15.6 kg m−2 year−1) occurred under conditions of high light (high edge per mesocosm area) and high root contact with nutrient-rich influent (shallow, sandy substrate) and may overestimate plant uptake in larger wetlands. The addition of a nitrification-inhibitor (N-Serve) indicated that 34% of the NH4+ supply was transformed to NO3 by nitrifying bacteria.  相似文献   

12.
Miniature heat balance-sap flow gauges were used to measure water flows in small-diameter roots (3–4 mm) in the undisturbed soil of a mature beech–oak–spruce mixed stand. By relating sap flow to the surface area of all branch fine roots distal to the gauge, we were able to calculate real time water uptake rates per root surface area (Js) for individual fine root systems of 0.5–1.0 m in length. Study aims were (i) to quantify root water uptake of mature trees under field conditions with respect to average rates, and diurnal and seasonal changes of Js, and (ii) to investigate the relationship between uptake and soil moisture θ, atmospheric saturation deficit D, and radiation I. On most days, water uptake followed the diurnal course of D with a mid-day peak and low night flow. Neighbouring roots of the same species differed up to 10-fold in their daily totals of Js (<100–2000 g m−2 d−1) indicating a large spatial heterogeneity in uptake. Beech, oak and spruce roots revealed different seasonal patterns of water uptake although they were extracting water from the same soil volume. Multiple regression analyses on the influence of D, I and θ on root water uptake showed that D was the single most influential environmental factor in beech and oak (variable selection in 77% and 79% of the investigated roots), whereas D was less important in spruce roots (50% variable selection). A comparison of root water uptake with synchronous leaf transpiration (porometer data) indicated that average water fluxes per surface area in the beech and oak trees were about 2.5 and 5.5 times smaller on the uptake side (roots) than on the loss side (leaves) given that all branch roots <2 mm were equally participating in uptake. Beech fine roots showed maximal uptake rates on mid-summer days in the range of 48–205 g m−2 h−1 (i.e. 0.7–3.2 mmol m−2 s−1), oak of 12–160 g m−2 h−1 (0.2–2.5 mmol m−2 s−1). Maximal transpiration rates ranged from 3 to 5 and from 5 to 6 mmol m−2 s−1 for sun canopy leaves of beech and oak, respectively. We conclude that instantaneous rates of root water uptake in beech, oak and spruce trees are above all controlled by atmospheric factors. The effects of different root conductivities, soil moisture, and soil hydraulic properties become increasingly important if time spans longer than a week are considered.  相似文献   

13.
Wetlands are large carbon pools and play important roles in global carbon cycles as natural carbon sinks. This study analyzes the variation of total soil carbon with depth in two temperate (Ohio) and three tropical (humid and dry) wetlands in Costa Rica and compares their total soil C pool to determine C accumulation in wetland soils. The temperate wetlands had significantly greater (P < 0.01) C pools (17.6 kg C m−2) than did the wetlands located in tropical climates (9.7 kg C m−2) in the top 24 cm of soil. Carbon profiles showed a rapid decrease of concentrations with soil depth in the tropical sites, whereas in the temperate wetlands they tended to increase with depth, up to a maximum at 18–24 cm, after which they started decreasing. The two wetlands in Ohio had about ten times the mean total C concentration of adjacent upland soils (e.g., 161 g C kg−1 were measured in a central Ohio isolated forested wetland, and 17 g C kg−1 in an adjacent upland site), and their soil C pools were significantly higher (P < 0.01). Among the five wetland study sites, three main wetland types were identified – isolated forested, riverine flow-through, and slow-flow slough. In the top 24 cm of soil, isolated forested wetlands had the greatest pool (10.8 kg C m−2), significantly higher (P < 0.05) than the other two types (7.9 kg C m−2 in the riverine flow-though wetlands and 8.0 kg C m−2 in a slowly flowing slough), indicating that the type of organic matter entering into the system and the type of wetland may be key factors in defining its soil C pool. A riverine flow-through wetland in Ohio showed a significantly higher C pool (P < 0.05) in the permanently flooded location (18.5 kg C m−2) than in the edge location with fluctuating hydrology, where the soil is intermittently flooded (14.6 kg C m−2).  相似文献   

14.
Net daily budgets of dissolved oxygen (O2), dissolved inorganic carbon (DIC), dissolved inorganic nitrogen (DIN = NH4++NO2+NO3) and soluble reactive phosphorus (SRP) were determined in a pond colonised by Ulva spp. This pond received wastewater from a land-based fish farm and was used as a phytotreatment plant. Three consecutive 24-h cycles of measurements were performed with 8–14 samplings per day. Water samples were collected at the inlet and outlet of the pond and budgets were estimated from differences between inlet and outlet loadings. The first cycle was started when Ulva biomass was 8 kg m−2, as wet weight. The second cycle was performed after the harvest of ~20% of the macroalgal biomass and the third after the harvest of another ~20% of the remaining biomass. Ulva removal was very fast (<1 h) and samplings for cycles 2 and 3 were started two hours after harvesting, so that the whole experiment lasted ~80 h. When Ulva biomass was at its maximum, the aquatic system was heterotrophic with an O2 demand of 519 mol d−1 and a net regeneration of DIC (2686 mol d−1), NH4+ (49 mol d−1) and SRP (2.5 mol d−1). The DIC to O2 ratio was an indicator of persistent anaerobic metabolism. Following the first harvest intervention, this system displayed a prompt response and shifted toward a lower O2 demand (from −519 to −13 mol d−1), with a lesser regeneration degree of NH4+ (11.4 mol d−1) and DIC (1066 mol d−1). After the second Ulva removal the net budget of SRP became negative (−1.0 mol d−1). By integrating these results over the three days cycle we estimated that in order to operate an efficient nutrient control and maintain macroalgal mats in a healthy status the optimal Ulva biomass should be well below ~4 kg m−2 as wet weight. Above this threshold, self-limitation would render most of the algal mat unable to exploit light and nutrients. An efficient removal of nitrogen and phosphorus could be attained through the management of macroalgal biomass only with an optimisation of recipient surface to nutrient loading ratio.  相似文献   

15.
Hartbeespoort Dam, a hypertrophic, warm monomictic impoundment in South Africa, receives extremely high phosphorus loads (14.6–25.9 g m–2 a–1) that are dominated by point source discharges from municipal wastewater treatment works. The reduced state of the phosphorus discharged from the works has led to the dominance of the dissolved phosphorus pool by low molecular weight orthophosphates which are analytically detectable as soluble reactive phosphorus (SRP; 60% of total phosphorus pool). Seasonality in the in-lake total phosphorus pool is regulated by a combination of abiotic and hydrological processes; biotic processes appear to play a minor role. Mass balance calculations indicate that between 62 and 77% of the annual total phosphorus inflow load is retained within the impoundment each year.  相似文献   

16.
A one year physicochemical survey was conducted on the Tongue River Reservoir, a run of the river impoundment in southeastern Montana. The Tongue River was the only significant inflow and supplied 93, 96 and 97% of the nutrient, major ion and water inputs to the impoundment. Heat advected from inflowing water accounted for 17% of the energy gained during the summer heating cycle. The annual nutrient load to the reservoir from the river was 20.2 g m–2 total nitrogen (TN) and 3.8 g m–2 total phosphorus (TP). Due to the absence of reducing conditions at depth and the complex seasonal pattern of water movement through the reservoir, 99% of the TN load was discharged but 49% of the TP load was retained in the reservoir.  相似文献   

17.
A first generation wetland ecosystem model is developed from first-year field data for four constructed freshwater marshes at the Des Plaines River Wetland Demonstration Project in northeastern Illiois, USA. The model, which includes hydrology, sediment and phophorus algorithms common for all four wetlands, was used for the integration of data collected as part of the many different aspects of the demonstration project and for prediction of wetland function under varying hydrologic and chemical loadings. Stepwise calibration was completed on the model for the hydrology, sediment, productivity, and phosphorus submodels. Separate sedimentation coefficients were necessary for each wetland land and each season. Preliminary simulations investigate the role of changing flow conditions in the wetlands on phosphorus retention. As simulated inflow increased from 34 to 136 cm/wk, phosphorus retention increased from 1.5 to 3.3 g P m−2 yr−1 while retention efficiency decreased from 67 to 37%.  相似文献   

18.
Nitrogen Dynamics in the Steeply Stratified,Temperate Lake Verevi,Estonia   总被引:2,自引:0,他引:2  
The dynamics of different nitrogen compounds and nitrification in diverse habitats of a stratified Lake Verevi (Estonia) was investigated in 2000–2001. Also planktonic N2-fixation (N2fix) was measured in August of the observed years. The nitrogen that accumulated in the hypolimnion was trapped in the non-mixed layer during most of the vegetation period causing a concentration of an order of magnitude higher than in the epilimnion. The ammonium level remained low in the epilimnion (maximum 577 mgN m−3, average 115 mgN m−3) in spite of high concentrations in the hypolimnion (maximum 12223 mgN m−3, average 4807 mgN m−3). The concentrations of NO2 and NO3 remained on a low level both in the epilimnion (average 0.94 and 9.09 mgN m−3, respectively) and hypolimnion (average 0.47 and 5.05 mgN m−3, respectively). N2fix and nitrification ranged from 0.30 to 2.80 mgN m−3 day−1 and 6.0 to 107 mgN m−3 day−1, respectively; the most intensive processes occurred in 07.08.00 at depths of 2 and 5 m, accordingly. The role of N2fix in the total nitrogen budget of Lake Verevi (in August 2000 and 2001) was negligible while episodically in the nitrogen-depleted epilimnion the N2fix could substantially contribute to the pool of mineral nitrogen. Nitrification was unable to influence nitrogen dynamics in the epilimnion while some temporary coupling with ammonium dynamics in the hypolimnion was documented.  相似文献   

19.
The vertical and temporal distribution of metazooplankton in the small hypertrophic, strongly stratified, temperate Lake Verevi (Estonia) was studied during 1998–2001. The zooplankton of Lake Verevi is characteristic of hypertrophic lakes, with a small number of dominant species, rotifers being the main ones, and juveniles prevailing among copepods. In 1999–2001, the average abundance of metazooplankton in the lake was 1570 × 103 ind m−3; in the epilimnion 2320 × 103 ind m−3, in the metalimnion 2178 × 103 ind m−3, and in the hypolimnion 237 × 103 ind m−3. The average biomass of metazooplankton was 1.75 g m−3; in the epi-, meta- and hypolimnion, accordingly, 2.16, 2.85 and 0.26 g m−3. The highest abundances – 19,136 × 103 ind m−3 and 12,008 × 103 ind m−3 – were registered in the lower half of the metalimnion in 24 May and 5 June 2001, respectively. Rotifer Keratella cochlearis f. typica (Gosse, 1851) was the dominating species in abundance. In biomass, Asplanchna priodonta Gosse, 1850, among the rotifers, and Eudiaptomus graciloides (Lilljeborg, 1888), among the copepods, dominated. According to the data from 2000–2001, the abundance and biomass of both copepods and rotifers were highest in spring. Zooplankton was scarce in the hypolimnion, and no peaks were observed there. During the summers of 1998 and 1999, when thermal stratification was particularly strong, zooplankton was the most abundant in the upper half of the metalimnion, and a distinct peak of biomass occurred in the second fourth of the metalimnion. Probably, the main factors affecting the vertical distribution of zooplankton in L. Verevi are fish, Chaoborus larvae, and chemocline, while food, like phytoplankton, composition and abundance may affect more the seasonal development of zooplankton.  相似文献   

20.
Wind-induced sediment resuspension occurs frequently in the shallow and eutrophic Lake Arresø, Denmark. The impact of resuspension on internal phosphorus loading was investigated by laboratory experiments studying P-release from the undisturbed sediment surface and by experiments simulating resuspension events.Phosphorus release from undisturbed sediment sampled in May and August was 12 mg and 4 mg m–2 d–1, respectively. During experimental simulation of resuspension, soluble reactive phosphate (SRP) increased by 20–80 µg l–1, which indicates that a typical resuspension event in the lake would be accompanied by the release of 150 mg SRP m–2. The internal P loading induced by resuspension is estimated to be 60–70 mg m–2 d–1, or 20–30 times greater than the release from undisturbed sediment.SRP release during simulation of resuspension was mainly dependent on the equilibrium conditions in the water column and was basically independent of the increase in suspended solids and the duration of resuspension. A second simulation of resuspension conducted 26 hours later, did not result in any further release of SRP from sediment sampled in May. In contrast, there was an additional SRP release from sediment sampled in August, indicating that an exchangable P pool, capable of altering equilibrium conditions, is built up between resuspension events.It is concluded that resuspension, by increasing the P flux between sediment and water, plays a major role in the maintenance of the high nutrient level in Lake Arresø. A relatively high release rate is maintained during resuspension because of the low Fe:P ratio and the high concentration of NH4Cl-extractable P in the sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号