首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nitrate-independent nitrate reductase (NR) activity is generally found in legume root nodules. Therefore, the effects of nitrate on plant NR activity and mRNA were investigated in the root nodules of Lotus japonicus (L. japonicus). Both NR activity and mRNA levels in roots and root nodules were up-regulated by the addition of nitrate. In the absence of nitrate, NR activity and mRNA were detected in root nodules but not in roots. Southern blotting analysis indicates that NR is encoded by a single gene in L. japonicus. No nitrate was detected in the root nodules or roots of plants grown in the absence of nitrate, while its accumulation was observed in plants supplied with exogenous nitrate. These results indicate that inducible-type NR can be expressed in root nodules in the absence of nitrate. The activation state of the nitrate-independent activity of NR was as high as that of NR activity induced by nitrate. NR mRNA expressed independently of nitrate in root nodules without nitrate was localized in the infected regions of the root nodules. Thus, the expression could be related to the specific structure and environment of root nodules.  相似文献   

3.
Summary Three tobacco nitrite reductase (NiR) cDNA clones were isolated using spinach NiR cDNA as a probe. Sequence analysis and Southern blot hybridization revealed four genes in tobacco. Two of these genes presumably derived from the ancestral species Nicotiana tomentosiformis, the other two from the ancestor N. sylvestris. Northern blot analysis showed that one gene from each ancestral genome was expressed predominantly in leaves, whilst RNA from the other was detected mostly in roots. The accumulation of both leaf and root NiR mRNAs was induced by nitrate and repressed by nitrate- or ammonium-derived metabolites. In addition, the expression of the root NiR gene was detectable in leaves of a tobacco nitrate reductase (NR)-deficient mutant. Thus, the regulation of expression of tobacco NiR genes is comparable to the regulation of expression of barley NR genes.  相似文献   

4.
Complementary DNA has been isolated that codes for maize nitrite reductase (NiR) by using the corresponding spinach gene (E Back et al. 1988 Mol Gen Genet 212:20-26) as a heterologous probe. The sequences of the complementary DNAs from the two species are 66% homologous while the deduced amino acid sequences are 86% similar when analogous amino acids are included. A high percentage of the differences in the DNA sequences is due to the extremely strong bias in the corn gene to have a G/C base in the third codon position with 559/569 codons ending in a G or C. Using a hydroponic system, maize seedlings grown in the absence of an exogenous nitrogen source were induced with nitrate or nitrite. Nitrate stimulated a rapid induction of the NiR mRNA in both roots and leaves. There is also a considerable induction of this gene in roots upon the addition of nitrite, although under the conditions used the final mRNA level was not as high as when nitrate was the inducer. There is a small but detectable level of NiR mRNA in leaves prior to induction, but no constitutive NiR mRNA can be seen in the roots. Analysis of genomic DNA supports the notion that there are at least two NiR genes in maize.  相似文献   

5.
6.
Summary The sequence of an mRNA encoding nitrite reductase (NiR, EC 1.7.7.1.) from the tree Betula pendula was determined. A cDNA library constructed from leaf poly(A)+ mRNA was screened with an oligonucleotide probe deduced from NiR sequences from spinach and maize. A 2.5 kb cDNA was isolated that hybridized to an mRNA, the steady-state level of which increased markedly upon induction with nitrate. The nucleotide sequence of the cDNA contains a reading frame encoding a protein of 583 amino acids that reveals 79% identity with NiR from spinach. The transit peptide of the NiR precursor from birch was determined to be 22 amino acids in size by sequence comparison with NiR from spinach and maize and is the shortest transit peptide reported so far. A graphical evaluation of identities found in the NiR sequence alignment revealed nine well conserved sections each exceeding ten amino acids in size. Sequence comparisons with related redox proteins identified essential residues involved in cofactor binding. A putative binding site for ferredoxin was found in the N-terminal half of the protein.These sequence data appear in the EMBL/GenBank/DDBJ nucleotide sequence data bases under the accession number X60093  相似文献   

7.
A tobacco nitrite reductase (NiR) cDNA and its corresponding gene were isolated from cDNA and genomic libraries. An NiR antisense mRNA was expressed in transgenic tobacco under the control of a double 35S promoter. Transformants were obtained on a medium containing ammonium as the sole source of nitrogen. One plant growing normally on ammonium but displaying drastically reduced development and chlorotic leaves when grown on nitrate as the sole source of nitrogen was studied further. This plant accumulated nitrite fivefold over wild-type level and showed reduced amounts of ammonium (11% wild-type level), glutamine (19%), and total protein (8%). NiR mRNA and activity were below detectable levels. Under these conditions, nitrate reductase (NR) activity and mRNA were overexpressed, suggesting that N-metabolites resulting from nitrate reduction are responsible for the repression of the expression of the NR gene, independently from the presence or absence of a functional NR protein.  相似文献   

8.
Expression of the gene coding for nitrite reductase (NiR) is induced upon the addition of nitrate. We have analyzed this induction process in hydroponically grown maize (Zea mays L.) seedlings where the level of nitrate in the medium can be easily manipulated. There is a rapid induction of NiR mRNA upon addition of nitrate, increasing first in the roots and then in the leaves. The rapidity of the response depends on the nitrate concentration and the growth medium. However, the general pattern of expression is the same: the mRNA level increases, reaches a maximum, and then decreases, despite the fact that the nitrate concentration in the medium remains constant. This decline in mRNA level can be quite rapid, particularly in root tissue. If the nitrate is given as a pulse, the mRNA levels decrease even more rapidly. It is clear that the NiR mRNA is short-lived, with a half-life in the roots of less than 30 minutes. The NiR protein level, on the other hand, increases gradually somewhat after the increase in mRNA and remains at high levels at least for 24 hours after the addition of nitrate.  相似文献   

9.
10.
11.
12.
13.
The coordinate appearance of the bispecific NAD(P)H-nitrate reductase (NR; EC 1.6.6.2) and nitrite reductase (NiR; EC 1.7.7.1) was investigated in leaves and roots from European white birch seedlings (Betula pendula Roth). Induction by nitrate and light of both enzymes was analyzed by in vitro assays and by measuring NR- and NiR-encoding mRNA pools with homologous cDNAs as probes. When birch seedlings were grown on a medium containing ammonium as the sole nitrogen source, low constitutive expression of NR and NiR was observed in leaves, whereas only NiR was significantly expressed in roots. Upon transfer of the seedlings to a nitrate-containing medium, mRNA pools and activities of NR and NiR dramatically increased in leaves and roots, with a more rapid induction in leaves. Peak accumulations of mRNA pools preceded the maximum activities of NR and NiR, suggesting that the appearance of both activities can be mainly attributed to an increased expression of NR and NiR genes. Expression of NR was strictly light-dependent in leaves and roots and was repressed by ammonium in roots but not in leaves. In contrast with NR, constitutive expression of NiR was not affected by light, and even a slight induction following the addition of nitrate was found in the dark in roots but not in leaves. No effect of ammonium on NiR expression was detectable in both organs. In leaves as well as in roots, NiR was induced more rapidly than NR, which appears to be a safety measure to prevent nitrite accumulation.  相似文献   

14.
A promoter tagging program in the legume Lotus japonicus was initiated to identify plant genes involved in the nitrogen-fixing symbiosis between legumes and rhizobia. Seven transformed plant lines expressing the promoterless reporter gene uidA (beta-glucuronidase; GUS) specifically in roots and/or nodules were identified. Four of these expressed GUS in the roots only after inoculation with nodule-forming Mesorhizobium loti. In one line (T90), GUS activity was found in the root epidermis, including root hairs. During seedling growth, GUS expression gradually became focused in developing nodules and disappeared from root tissue. No GUS activity was detected when a non-nodulating mutant of M. loti was used to inoculate the plants. The T-DNA insertion in this plant line was located 1.3 kb upstream of a putative coding sequence with strong homology to calcium-binding proteins. Four motifs were identified, which were very similar to the "EF hands" in calmodulin-related proteins, each binding one Ca2+. We have named the gene LjCbp1 (calcium-binding protein). Northern (RNA) analyses showed that this gene is expressed specifically in roots of L. japonicus. Expression was reduced in roots inoculated with non-nodulating M. loti mutants and in progeny homozygous for the T-DNA insertion, suggesting a link between the T-DNA insertion and this gene.  相似文献   

15.
Based on the NH2-terminal sequence of three PR-10 isoforms previously identified in Lupinus albus leaves and a conserved amino-acid region in the PR-10 proteins from leguminosae, a pair of oligonucleotides was designed and used to amplify the corresponding cDNA fragment from a L. albus leaves cDNA library. A fragment of DNA of 200 bp was isolated from the polymerase chain reaction (PCR) mixture and subsequently used to screen the cDNA library. A cDNA coding for a PR-10 protein of 158 amino acid residues was cloned and sequenced. Subsequent studies involving Northern and Western blot analysis have shown that the PR-10 protein isoforms are differentially expressed during the development of the healthy lupin plant. High mRNA and protein contents were detected in roots and hypocotyls of both 7- and 20-d-old plants. In young leaves, the mRNA and protein contents were low and increasead in mature leaves. Tissue printing experiments with root sections suggest that the proteins are extracellular and are mainly associated with the vascular tissues in mature roots.  相似文献   

16.
Ke D  Fang Q  Chen C  Zhu H  Chen T  Chang X  Yuan S  Kang H  Ma L  Hong Z  Zhang Z 《Plant physiology》2012,159(1):131-143
Nod Factor Receptor5 (NFR5) is an atypical receptor-like kinase, having no activation loop in the protein kinase domain. It forms a heterodimer with NFR1 and is required for the early plant responses to Rhizobium infection. A Rho-like small GTPase from Lotus japonicus was identified as an NFR5-interacting protein. The amino acid sequence of this Rho-like GTPase is closest to the Arabidopsis (Arabidopsis thaliana) ROP6 and Medicago truncatula ROP6 and was designated as LjROP6. The interaction between Rop6 and NFR5 occurred both in vitro and in planta. No interaction between Rop6 and NFR1 was observed. Green fluorescent protein-tagged ROP6 was localized at the plasma membrane and cytoplasm. The interaction between ROP6 and NFR5 appeared to take place at the plasma membrane. The expression of the ROP6 gene could be detected in vascular tissues of Lotus roots. After inoculation with Mesorhizobium loti, elevated levels of ROP6 expression were found in the root hairs, root tips, vascular bundles of roots, nodule primordia, and young nodules. In transgenic hairy roots expressing ROP6 RNA interference constructs, Rhizobium entry into the root hairs did not appear to be affected, but infection thread growth through the root cortex were severely inhibited, resulting in the development of fewer nodules per plant. These data demonstrate a role of ROP6 as a positive regulator of infection thread formation and nodulation in L. japonicus.  相似文献   

17.
We have isolated a Lotus japonicus cDNA corresponding to a highly abundant, late nodule-specific RNA species that encodes a polypeptide with a predicted molecular mass of 15.6 kD. The protein and its corresponding gene were designated Nlj16 and LjNOD16, respectively. LjNOD16 was found to be expressed only in the infected cells of L. japonicus nodules. Related DNA sequences could be identified in the genomes of both Glycine max and Medicago sativa. In the latter, a homologous mRNA species was detected in the nodules. Unlike LjNOD16, its alfalfa homologs appear to represent low-abundance mRNA species. However, the proteins corresponding to the LjNOD16 and its alfalfa homolog could be detected at similar levels in nodules but not in roots of both legume species. The predicted amino acid sequence analysis of nodulin Nlj16 revealed the presence of a long alpha-helical region and a positively charged C terminus. The former domain has a very high propensity to form a coiled-coil type structure, indicating that nodulin Nlj16 may interact with an as-yet-unidentified protein target(s) in the nodule-infected cells. Homology searches revealed no significant similarities to any known sequences in the databases, with the exception of two related, anonymous Arabidopsis expressed sequence tags.  相似文献   

18.
Nitrate assimilation in Lotus japonicus   总被引:3,自引:0,他引:3  
This paper summarizes some recent advances in the understanding of nitrate assimilation in the model legume Lotus japonicus. First, different types of experimental evidence are presented that emphasize the importance of the root in the nitrate-reducing assimilatory processes in this plant. Secondly, the main results from an ethyl methanesulphonate mutagenesis programme are presented. In this programme, chlorate-resistant and photorespiratory mutants were produced and characterized. The phenotype of one particular chlorate-resistant mutant suggested the importance of a low-affinity nitrate transport system for growth of L. japonicus plants under nitrate nutrition. The phenotype of photorespiratory mutants, affected in all forms of plastid glutamine synthetase in leaves, roots, and nodules, indicated that plastid glutamine synthetase was not required for primary nitrate assimilation nor for the symbiotic associations of the plant (nodulation, mycorrhization), provided photorespiration was suppressed. However, the phenotype of these mutants confirmed that plastid glutamine synthetase was required for the reassimilation of ammonium released by photorespiration. Finally, different aspects of the relationship between nitrate assimilation and osmotic stress in L. japonicus are also discussed, with specific reference to the biosynthesis of proline as an osmolyte.  相似文献   

19.
20.
A structural gene encoding nitrate reductase (NR) in bean ( Phaseolus vulgaris ) has been cloned and sequenced. The NR gene encodes a protein of 890 amino acids with a molecular mass of 100 kDa. Comparison to the other known NR gene from bean reveals 76% amino acid identity and comparison to NRs from other species shows amino acid identities ranging from 67 to 77%. At three positions the amino acid sequence displays differences from residues conserved in all other known NR proteins. The coding sequence is interrupted by four introns. Three of them are located at conserved positions in the region encoding the molybdenum cofactor-binding domain. The fourth intron is located in the hinge region between the heme and the FAD domain. This is the only example in which more than three introns have been found in a higher plant NR gene. The mRNA cap site was identified as an adenosine 79 nucleotides (nt) upstream of the ATG translation start codon. Northern analysis shows that the gene is nitrate inducible and highly expressed in trifoliolate leaves of 20-day-old bean plants and only weakly expressed in roots. The gene is also induced by light and sucrose in leaves of dark-adapted plants. The mRNA displays diurnal oscillation under the control of a circadian rhythm. Putative conserved GATA motifs in the promoter are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号