首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Butyric acid induces characteristic changes in the morphology of chick embryo chondrocytes. Chick embryo chondrocytes when cultured in the absence of butyrate exhibit a spherical morphology and synthesize cartilage-specific chondroitin sulfate proteoglycan (CSPG). When these cultures are initiated and maintained in the presence of butyric acid, chondrocytes exhibit a mesenchymal morphology, a 90% reduction in the synthesis of CSPG, and a 75% reduction in DNA synthesis. The reduced synthesis of CSPG and DNA was shown not to be dependent on the morphological change. Chondrocytes require CSPG in order to express a spherical morphology, since including chondroitinase ABC in the culture media caused the cells to spread. In addition, the treatment of chondrocytes with purified CSPG prior to culture in media containing butyric acid resulted in spherical cells. The butyrate-induced spreading was shown to require either serum or fibronectin and could be prevented with antiserum against chick cell-surface fibronectin (cFn). Cell-surface fibronectin, which was present on both spherical and flattened chondrocytes, organized into fibrils beneath cells which spread. Increased fibronectin synthesis was not responsible for the butyrate-induced morphological change. From this evidence, it is concluded that the mechanism by which butyrate alters the morphology of these cells in culture involves inhibiting CSPG synthesis, thus preventing CSPG accumulation in the extracellular matrix (ECM). The absence of CSPG in the ECM allows fibronectin to mediate spreading of chondrocytes in culture.  相似文献   

2.
The temporal and spatial distribution of type I collagen, type II collagen, cartilage-specific proteoglycan (CSPG) and fibronectin in mouse mandible is described. CD-1 mouse embryos of 12-, 15-, and 18-day gestation were used, and matrix molecules were localized using indirect immunofluorescence. On day 12, accumulation of type II collagen, CSPG, and fibronectin within regions of condensed mesenchyme was noted. On day 15, intense staining for type II collagen and CSPG occurred. Fibronectin was less brilliant with its greatest concentration near the perichondrium. On day 18, the cartilage matrix was undergoing osseous replacement concurrent with loss of type II collagen and CSPG. Type I collagen was seen in the perichondrium, membranous bone and sub-basement membrane region in specimens of all ages. Synthesis and expression of extracellular matrix molecules reflect patterns of differentiation in mandibular mesenchyme.  相似文献   

3.
The spreading of freshly isolated arterial smooth muscle cells on a substrate of fibronectin is mediated by an integrin receptor on the cell surface. It is associated with organization of actin filaments in stress fibers and marked changes in cell morphology and function, collectively referred to as a transition from a contractile to a synthetic phenotype. To study further how extracellular matrix components affect smooth muscle phenotype, we have analyzed the expression and organization of smooth-muscle-specific alpha-actin in freshly isolated rat aortic smooth muscle cells cultured on a substrate of fibronectin under serum-free conditions. Northern-blot analysis showed that the expression of mRNA for smooth muscle alpha-actin, but not for nonmuscle actin, was strongly repressed during primary culture. On the other hand, the cellular content of alpha-actin was only moderately changed during the same period. Indirect immunofluorescence staining revealed that nonmuscle actin was rapidly organized in stress fibers, which did not stain with a monoclonal antibody against smooth muscle alpha-actin. Filament bundles containing alpha-actin were most prominent in the central parts of the cytoplasm and gradually disappeared as the spreading of the cells progressed. In contrast to the situation with nonmuscle actin, there was no apparent overlap in the staining for alpha-actin and the fibronectin receptor (alpha 5 beta 1), indicating that this receptor interacted with nonmuscle actin during the initial spreading process. Taken together, the results show that the expression and organization of smooth muscle alpha-actin are changed during interaction of the cells with fibronectin early in primary culture. They support the notion that integrin-mediated interactions between extracellular matrix components and arterial smooth muscle cells take part in the control of smooth muscle phenotype.  相似文献   

4.
Extracellular matrix formation by chondrocytes in monolayer culture   总被引:10,自引:6,他引:4       下载免费PDF全文
In previous studies were have reported on the secretion and extracellular deposition of type II collagen and fibronectin (Dessau et al., 1978, J. Cell Biol., 79:342-355) and chondroitin sulfate proteoglycan (CSPG) (Vertel and Dorfman, 1979, Proc. Natl. Acad. Sci. U. S. A. 76:1261-1264) in chondrocyte cultures. This study describes a combined effort to compare sequence and pattern of secretion and deposition of all three macromolecules in the same chondrocyte culture experiment. By immunofluorescence labeling experiments, we demonstrate that type II collagen, fibronectin, and CSPG reappear on the cell surface after enzymatic release of chondrocytes from embryonic chick cartilage but develop different patterns in the pericellular matrix. When chondrocytes spread on the culture dish, CSPG is deposited in the extracellular space as an amorphous mass and fibronectin forms fine, intercellular strands, whereas type II collagen disappears from the chondrocyte surface and remains absent from the extracellular space in early cultures. Only after cells in the center of chondrocyte colonies shape reassume spherical shape does the immunofluorescence reveal type II collagen in the refractile matrix characteristic of differentiated cartilage. By immunofluorescence double staining of the newly formed cartilage matrix, we demonstrate that CSPG spreads farther out into the extracellular space that type II collagen. Fibronectin finally disappears from the cartilage matrix.  相似文献   

5.
Smooth muscle cell migration, proliferation, and deposition of extracellular matrix are key events in atherogenesis and restenosis development. To explore the mechanisms that regulate smooth muscle cell function, we have investigated whether perlecan, a basement membrane heparan sulfate proteoglycan, modulates interaction between smooth muscle cells and other matrix components. A combined substrate of fibronectin and perlecan showed a reduced adhesion of rat aortic smooth muscle cells by 70-90% in comparison to fibronectin alone. In contrast, perlecan did not interfere with cell adhesion to laminin. Heparinase treated perlecan lost 60% of its anti-adhesive effect. Furthermore, heparan sulfate as well as heparin reduced smooth muscle cell adhesion when combined with fibronectin whereas neither hyaluronan nor chondroitin sulfate had any anti-adhesive effects. Addition of heparin as a second coating to a preformed fibronectin matrix did not affect cell adhesion. Cell adhesion to the 105- and 120 kDa cell-binding fragments of fibronectin, lacking the main heparin-binding domains, was also inhibited by heparin. In addition, co-coating of fibronectin and (3)H-heparin showed that heparin was not even incorporated in the substrate. Morphologically, smooth muscle cells adhering to a substrate prepared by co-coating of fibronectin and perlecan or heparin were small, rounded, lacked focal contacts, and showed poorly developed stress fibers of actin. The results show that the heparan sulfate chains of perlecan lead to altered interactions between smooth muscle cells and fibronectin, possibly due to conformational changes in the fibronectin molecule. Such interactions may influence smooth muscle cell function in atherogenesis and vascular repair processes.  相似文献   

6.
Chondroitin-sulfate containing proteoglycan (CSPG) of the extracellular matrix (ECM) was visualized in chick tissues and cell cultures with a monoclonal antibody, CS-56. Cultured cells of various origins contained dense punctate layers of CSPG on both the substrate and the cell surface, as determined by immunofluorescent and immunogold staining. Under culture conditions the CSPG-containing matrix was usually excluded from stable cell-to-substrate focal contacts. The substrate-attached CSPG exhibited remarkable chemical stability but could be successfully removed by pronase or chondroitinases ABC and AC. Incubation of living cells with CS-56 antibodies resulted in the clustering of surface CSPG into patches, indicating that the surface-bound CSPG is free to move laterally along the plasma membrane. The unique properties of the CSPG-containing ECM revealed by CS-56 antibodies and their relationships to specific types of cell contacts are discussed.  相似文献   

7.
It is currently unclear whether retinal ganglion cell (RGC) axon regeneration depends on down-regulation of axon growth-inhibitory proteins, and to what extent outgrowth-promoting substrates contribute to RGC axon regeneration in reptiles. We performed an immunohistochemical study of the regulation of the axon growth-inhibiting extracellular matrix molecules tenascin-R and chondroitin sulphate proteoglycan (CSPG), the axon outgrowth-promoting extracellular matrix proteins fibronectin and laminin, and the axonal tenascin-R receptor protein F3/contactin during RGC axon regeneration in the lizard, Gallotia galloti. Tenascin-R and CSPG were expressed in an extracellular matrix-, oligodendrocyte/myelin- and neuron-associated pattern and up-regulated in the regenerating optic pathway. The expression pattern of tenascin-R was not indicative of a role in channeling or restriction of re-growing RGC axons. Up-regulation of fibronectin, laminin, and F3/contactin occurred in spatiotemporal patterns corresponding to tenascin-R expression. Moreover, we analyzed the influence of substrates containing tenascin-R, fibronectin, and laminin on outgrowth of regenerating lizard RGC axons. In vitro regeneration of RGC axons was not inhibited by tenascin-R, and further improved on mixed substrates containing tenascin-R together with fibronectin or laminin. These results indicate that RGC axon regeneration in Gallotia galloti does not require down-regulation of tenascin-R or CSPG. Presence of tenascin-R is insufficient to prevent RGC axon growth, and concomitant up-regulation of axon growth-promoting molecules like fibronectin and laminin may override the effects of neurite growth inhibitors on RGC axon regeneration. Up-regulation of contactin in RGCs suggests that tenascin-R may have an instructive function during axon regeneration in the lizard optic pathway.  相似文献   

8.
Artificial extracellular matrices composed of collagen, glycosaminoglycans (GAG), proteoglycans (PG), plasma fibronectin (FN), and a hyaluronate-binding protein (HABP) have been prepared that morphologically resemble embryonic extracellular matrices in vivo at the light and electron microscope level. The effect of each of the above matrix molecules on the structure and "self-assembly" of these artificial matrices was delineated. (1) Matrix components assembled in vitro morphologically resemble their counterparts in vivo, for the most part. Scanning and transmission electron microscopy indicate that under our assembly and fixation conditions, collagen forms striated fibrils that are 125 nm in diameter, FN forms 30- to 60-nm granules, chondroitin sulfate proteoglycan (CSPG) forms 27- to 37-nm granules, chondroitin sulfate (CS) assembles into 100- to 250-nm spheres, and hyaluronate (HA) appears either as granular mats when fixed with cetylpyridinium chloride (CPC) or as 1.5- to 3-nm microfibrils when preserved with ruthenium red plus tannic acid. These molecules are known to assume the same configurations in embryonic matrices when the same preservation techniques are used with the exception of FN, which generally forms fibrillar arrays. (2) Addition of various matrix molecules can radically change the appearance of the collage gels. HA greatly expands the volume of the gel and increases the space between collagen fibrils. CSPG at low concentrations (less than 1 mg/ml) and CS at high concentrations (greater than 20 mg/ml) bundle the collagen fibrils into twisted ropes. (3) A variety of assays were used to examine binding between various matrix components and retention of these components in the hydrated collagen lattices. These assays included solid-phase binding assays, negative staining of spread mixtures of matrix components, cryostat sections of unfixed mixtures of matrix components, and retention of radiolabeled matrix molecules in fixed and washed gels. A number of these binding interactions may play a role in the assembly and stabilization of the matrix. (a) HA, CSPG, and FN bind to collagen. CS appears to only weakly bind to collagen, if at all. (b) FN promotes the increased retention of HA, CSPG, and to a very small degrees, CS, in collagen gels. Conversely, the GAG increase the retention of 3H-FN in the gels. Furthermore, FN binds to HA, CS, and CSPG as demonstrated by solid surface binding assays and morphological criteria. The increased retention of GAG and CSPG by the addition of FN may be due to both stabilization of binding to the collagen and trapping of matrix complexes within the gel. (c) HA binds to both CS and CSPG.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Osteoblasts elaborate a dynamic extracellular matrix that is constructed and mineralized as bone is formed. This matrix is primarily composed of collagen, along with noncollagenous proteins which include glycoproteins and proteoglycans. After various times in culture, human bone cells were labeled with [35S]sulfate, [3H] leucine/proline, or [3H]glucosamine and the metabolism of hyaluronan and four distinct species of proteoglycans (PGs) was assayed in the medium, cell layer, and intracellular pools. These cells produce hyaluronan (Mr approximately 1,400,000; a chondroitin sulfate PG (CSPG), Mr approximately 600,000; a heparan sulfate PG (HSPG), Mr approximately 400,000; and two dermatan sulfate PGs with Mr approximately 270,000 (biglycan, PG I) and Mr approximately 135,000 (decorin, PG II) that distribute between the medium and cell layer. Two days following subculture, 12 h [35S]sulfate steady-state labeling yielded a composition of 24, 27, 31, and 18% for total CSPG, HSPG, biglycan, and decorin, respectively. While HSPG and decorin levels and distribution between medium and cell layer remained relatively constant during steady-state labeling at different times in culture, CSPG and biglycan levels increased dramatically at late stages of growth, and their distribution changed throughout culture. These results were independent of cell density, media depletion, and labeling pool effects. In contrast, hyaluronan synthesis was uncoupled from PG synthesis and apparently density-dependent. Pulse chase labeling at different stages of culture showed that the CSPG and decorin behaved as secretory PGs. Both HSPG and biglycan underwent catabolism, with HSPG possessing a t1/2 of 8 h and biglycan a t1/2 of 4 h. While the rate of HSPG turnover did not appreciably change between early and late culture, that of biglycan decreased. The mRNA for decorin was constant, while that of biglycan changed during culture. These results suggest that each PG possesses a distinct pattern of cellular and temporal distribution that may reflect specific stages in matrix formation and maturation.  相似文献   

10.
We generated a monoclonal antibody (Mab) against a large chondroitin sulfate proteoglycan (CSPG) isolated from bovine aorta. This Mab (941) immunoprecipitates a CSPG synthesized by cultured monkey arterial smooth muscle cells. The immunoprecipitated CSPG is totally susceptible to chondroitinase ABC digestion and possesses a core glycoprotein of Mr approximately 400-500 KD. By use of immunofluorescence light microscopy and immunogold electron microscopy, the PG recognized by this Mab was shown to be deposited in the extracellular matrix of monkey arterial smooth muscle cell cultures in clusters which were not part of other fibrous matrix components and not associated with the cell's plasma membrane. With similar immunolocalization techniques, the CSPG antigen was found enriched in the intima and present in the medial portions of normal blood vessels, as well as in the interstitial matrix of thickened intimal lesions of atherosclerotic vessels. Immunoelectron microscopy revealed that this CSPG was confined principally to the space within the extracellular matrix not occupied by other matrix components, such as collagen and elastic fibers. These results indicate that this particular proteoglycan has a specific but restricted distribution in the extracellular matrix of arterial tissue.  相似文献   

11.
Subconfluent cultures of human embryonic skin fibroblasts were labelled with [35S]sulphate for 3 days, after which cell-free extracellular matrix was isolated. A chondroitin sulphate proteoglycan (CSPG) and a heparan sulphate proteoglycan (HSPG) were purified from the matrix. Chromatography on Sepharose CL-2B gave peak Kav. values of 0.35 and 0.38 respectively for the CSPG and the HSPG. The polysaccharide chains released from the two PGs were of similar size (Kav. 0.50 on Sepharose CL-4B). Approx. 50% of the CSPG showed affinity for hyaluronic acid (HA). However, it differed immunologically from the HA-aggregating CSPG of human articular cartilage, and had a larger core protein (apparent molecular mass 290 kDa) than had the cartilage PG. Neither metabolically [35S]sulphate-labelled PGs, isolated from the medium of fibroblast cultures, nor chemically 3H-labelled polysaccharides (HA, CS, HS and heparin) were incorporated into the extracellular matrix when added to unlabelled cell cultures. These results indicate that the matrix PGs are not derived from the PGs present in the medium and that an interation between polysaccharide chains and matrix components is not sufficient for incorporation of PGs into the matrix. Incubation of cell-free 35S-labelled matrix with unlabelled polysaccharides did not lead to the release of any 35S-labelled material, supporting this conclusion. Furthermore, so-called 'link proteins' were not present in the fibroblast cultures, indicating that the CSPGs were anchored in the matrix in a manner different from the link-stabilized association of CSPG with HA in chondrocyte matrix. The identification of a proteinase, secreted by fibroblasts in culture, that after activation with heparin has the ability to release 35S-labelled PGs from the matrix may also indicate that the core proteins are important for the association of the PGs to the matrix.  相似文献   

12.
Oral squamous cell carcinoma (SCC) is characterized by invasive growth and the propensity for distant metastasis. The expression of specific adhesion receptors promotes defined interactions with the specific components found within the extracellular matrix (ECM). We previously showed that the alpha v beta 6 fibronectin receptor is highly expressed in oral SCC. Here we forced expression of the beta 6 subunit into poorly invasive SCC9 cells to establish the SCC9 beta 6 cell line and compared these two cell lines in several independent assays. Whereas adhesion to fibronectin was unaffected by the expression of beta 6, migration on fibronectin and invasion through a reconstituted basement membrane (RBM) were both increased. Function-blocking antibodies to alpha v beta 6 (10D5) reduced both migration on fibronectin and invasion through an RBM, whereas anti-alpha 5 antibodies were effective only in suppressing migration on fibronectin, not invasion. Expression of beta 6 also promoted tumor growth and invasion in vivo and modulated fibronectin matrix deposition. When grown as a co-culture with SCC9 cells, peritumor fibroblasts (PTF) organized a dense fibronectin matrix. However, fibronectin matrix assembly was decreased in co-cultures of SCC9 beta 6 cells and PTF and this decrease was reversed by the addition of function-blocking anti-alpha v beta 6 antibodies. The expression of beta 6 also resulted in increased levels of matrix metalloproteinase 3. Addition of the general MMP inhibitor GM6001 to SCC9 beta 6/PTF co-cultures dramatically increased fibronectin matrix assembly in a similar fashion as incubation with anti-alpha v beta 6 antibodies. These results demonstrate that expression of beta 6 (1) increases oral SCC cell motility and growth in vitro and in vivo; (2) negatively affects fibronectin matrix assembly; and (3) stimulates the expression and activation of MMP3. We suggest that the integrin alpha v beta 6 is a key component of oral SCC invasion and metastasis through modulation of MMP-3 activity.  相似文献   

13.
Cellular recognition and adhesion to the extracellular matrix (ECM) has a complex molecular basis, involving both integrins and cell surface proteoglycans (PG). The current studies have used specific inhibitors of chondroitin sulfate proteoglycan (CSPG) synthesis along with anti-alpha 4 integrin subunit monoclonal antibodies to demonstrate that human melanoma cell adhesion to an A-chain derived, 33-kD carboxyl-terminal heparin binding fragment of human plasma fibronectin (FN) involves both cell surface CSPG and alpha 4 beta 1 integrin. A direct role for cell surface CSPG in mediating melanoma cell adhesion to this FN fragment was demonstrated by the identification of a cationic synthetic peptide, termed FN-C/H-III, within the fragment. FN-C/H-III is located close to the amino terminal end of the fragment, representing residues #1721-1736 of intact FN. FN-C/H-III binds CSPG directly, can inhibit CSPG binding to the fragment, and promotes melanoma cell adhesion by a CSPG-dependent, alpha 4 beta 1 integrin-independent mechanism. A scrambled version of FN-C/H-III does not inhibit CSPG binding or cell adhesion to the fragment or to FN-C/H-III, indicating that the primary sequence of FN-C/H-III is important for its biological properties. Previous studies have identified three other synthetic peptides from within this 33-kD FN fragment that promote cell adhesion by an arginyl-glycyl-aspartic acid (RGD) independent mechanism. Two of these synthetic peptides (FN-C/H-I and FN-C/H-II) bind heparin and promote cell adhesion, implicating cell surface PG in mediating cellular recognition of these two peptides. Additionally, a third synthetic peptide, CS1, is located in close proximity to FN-C/H-I and FN-C/H-II and it promotes cell adhesion by an alpha 4 beta 1 integrin-dependent mechanism. In contrast to FN-C/H-III, cellular recognition of these three peptides involved contributions from both CSPG and alpha 4 integrin subunits. Of particular importance are observations demonstrating that CS1-mediated melanoma cell adhesion could be inhibited by interfering with CSPG synthesis or expression. Since CS1 does not bind CSPG, the results suggest that CSPG may modify the function and/or activity of alpha 4 beta 1 integrin on the surface of human melanoma cells. Together, these results support a model in which the PG and integrin binding sites within the 33-kD fragment may act in concert to focus these two cell adhesion receptors into close proximity on the cell surface, thereby influencing initial cellular recognition events that contribute to melanoma cell adhesion on this fragment.  相似文献   

14.
Cell attachment and neurite outgrowth by embryonic neural retinal cells were measured in separate quantitative assays to define differences in substrate preference and to demonstrate developmentally regulated changes in cellular response to different extracellular matrix glycoproteins. Cells attached to laminin, fibronectin, and collagen IV in a concentration-dependent fashion, though fibronectin was less effective for attachment than the other two substrates. Neurite outgrowth was much more extensive on laminin than on fibronectin or collagen IV. These results suggest that different substrates have distinct effects on neuronal differentiation. Neural retinal cell attachment and neurite outgrowth were inhibited on all three substrates by two antibodies, cell substratum attachment antibody (CSAT) and JG22, which recognize a cell surface glycoprotein complex required for cell interactions with several extracellular matrix constituents. In addition, retinal cells grew neurites on substrates coated with the CSAT antibodies. These results suggest that cell surface molecules recognized by this antibody are directly involved in cell attachment and neurite extension. Neural retinal cells from embryos of different ages varied in their capacity to interact with extracellular matrix substrates. Cells of all ages, embryonic day 6 (E6) to E12, attached to collagen IV and CSAT antibody substrates. In contrast, cell attachment to laminin and fibronectin diminished with increasing embryonic age. Age-dependent differences were found in the profile of proteins precipitated by the CSAT antibody, raising the possibility that modifications of these proteins are responsible for the dramatic changes in substrate preference of retinal cells between E6 and E12.  相似文献   

15.
Fibronectin and laminin are two extracellular glycoproteins which are involved in various processes of cellular development and differentiation. The present investigation describes changes in their distribution during regeneration of the newt forelimb, as determined by indirect immunofluorescence. The distribution of fibronectin and laminin was similar in normal limb tissue components. These glycoproteins were localized in the pericellular region of the myofibers corresponding to its basement membrane; the perineurium and endoneurium of the nerves; and the basement membranes of blood vessels, skin epithelium, and dermal glands. The cytoplasm of myofibers, axons, skin epithelium, and bone matrix lacked fluorescence for both glycoproteins. After limb amputation in the regenerating blastema, extensive presence of fibronectin, but not laminin, was seen in and around the undifferentiated blastemal cells. Increased fluorescence for fibronectin was also seen during blastema growth, blastemal cell aggregation, and early stages of redifferentiation. As redifferentiation continued, staining for fibronectin slowly disappeared from the cartilage matrix and the myoblast fusion zone. Laminin was first observed around the regenerated myotubes; this was followed by the appearance of fibronectin suggesting a sequential formation of these two components of the new myotube basement membrane. In the regenerated limb, the distribution of laminin and fibronectin was similar to that seen in normal limb. Based on the distribution pattern of these glycoproteins, it is concluded that fibronectin may play an important role in blastemal cell aggregation, cell alignment, and initiation of redifferentiation. After redifferentiation, both laminin and fibronectin may be important in the determination of the architecture of the regenerated limb.  相似文献   

16.
The metastatic spread of tumor cells occurs through a complex series of events, one of which involves the adhesion of tumor cells to extracellular matrix (ECM) components. Multiple interactions between cell surface receptors of an adherent tumor cell and the surrounding ECM contribute to cell motility and invasion. The current studies evaluate the role of a cell surface chondroitin sulfate proteoglycan (CSPG) in the adhesion, motility, and invasive behavior of a highly metastatic mouse melanoma cell line (K1735 M4) on type I collagen matrices. By blocking mouse melanoma cell production of CSPG with p-nitrophenyl beta-D-xylopyranoside (beta-D-xyloside), a compound that uncouples chondroitin sulfate from CSPG core protein synthesis, we observed a corresponding decrease in melanoma cell motility on type I collagen and invasive behavior into type I collagen gels. Melanoma cell motility on type I collagen could also be inhibited by removing cell surface chondroitin sulfate with chondroitinase. In contrast, type I collagen-mediated melanoma cell adhesion and spreading were not affected by either beta-D-xyloside or chondroitinase treatments. These results suggest that mouse melanoma CSPG is not a primary cell adhesion receptor, but may play a role in melanoma cell motility and invasion at the level of cellular translocation. Furthermore, purified mouse melanoma cell surface CSPG was shown, by affinity chromatography and in solid phase binding assays, to bind to type I collagen and this interaction was shown to be mediated, at least in part, by chondroitin sulfate. Additionally we have determined that mouse melanoma CSPG is composed of a 110-kD core protein that is recognized by anti-CD44 antibodies on Western blots. Collectively, our data suggests that interactions between a cell surface CD44-related CSPG and type I collagen in the ECM may play an important role in mouse melanoma cell motility and invasion, and that the chondroitin sulfate portion of the proteoglycan seems to be a critical component in mediating this effect.  相似文献   

17.
Decellularisation of skeletal muscle provides a system to study the interactions of myoblasts with muscle extracellular matrix (ECM). This study describes the efficient decellularisation of quadriceps muscle with the retention of matrix components and the use of this matrix for myoblast proliferation and differentiation under serum free culture conditions. Three decellularisation approaches were examined; the most effective was phospholipase A2 treatment, which removed cellular material while maximizing the retention of ECM components. Decellularised muscle matrices were then solubilized and used as substrates for C2C12 mouse myoblast serum free cultures. The muscle matrix supported myoblast proliferation and differentiation equally as well as collagen and fibronectin. Immunofluorescence analyses revealed that myoblasts seeded on muscle matrix and fibronectin differentiated to form long, well-aligned myotubes, while myoblasts seeded on collagen were less organized. qPCR analyses showed a time dependent increase in genes involved in skeletal muscle differentiation and suggested that muscle-derived matrix may stimulate an increased rate of differentiation compared to collagen and fibronectin. Decellularized whole muscle three-dimensional scaffolds also supported cell adhesion and spreading, with myoblasts aligning along specific tracts of matrix proteins within the scaffolds. Thus, under serum free conditions, intact acellular muscle matrices provided cues to direct myoblast adhesion and migration. In addition, myoblasts were shown to rapidly secrete and organise their own matrix glycoproteins to create a localized ECM microenvironment. This serum free culture system has revealed that the correct muscle ECM facilitates more rapid cell organisation and differentiation than single matrix glycoprotein substrates.  相似文献   

18.
A growth factor (EDGF) derived from the retina controls the proliferation and shape of adult bovine epithelial lens (BEL) cells in vitro as well as extracellular matrix (ECM) assembly. In order to analyse this mechanism and the specificity of the interactions between BEL cells and the extracellular matrix we have investigated the adhesion and growth of BEL cells on various substrata (fibronectin, laminin, ECM). BEL cells treated with EDGF adhered more slowly to plastic Petri dishes than untreated cells, in part due to EDGF inhibition of fibronectin deposition. The untreated BEL cells spread less well on ECM or laminin than on fibronectin-coated plastic. The preferential adhesiveness of BEL cells on fibronectin vs laminin was confirmed by attachment experiments performed on replicas of SDS-PAGE of these proteins. However, in long-term cultures, 8 days after seeding, BEL cells were very differently arranged on plastic or on ECM. ECM by itself did not increase the proliferation rate but helped to restore an organized cell monolayer. BEL cells stimulated to grow on ECM by treatment with EDGF exhibited at least transiently contact inhibition producing a perfectly organized epithelium similar to the one observed in vivo. These results suggest specific interactions between ECM or ECM components with BEL cell that restrain excessive cell spreading and restore an original polarized phenotype of the cells seen in vivo.  相似文献   

19.
Dermal cells isolated from the back of 7-day chick embryos were cultured on homogeneous two-dimensional substrates consisting of one or two extracellular matrix components (type I, III or IV collagen, fibronectin and several glycosaminoglycans: hyaluronate, chondroitin-4, chondroitin-6, dermatan or heparan sulfate). The effect of these substrates on cell behavior was compared with that of culture dish polystyrene. Three parameters of cell behavior were examined: cell proliferation and patterning, spreading (cell surface) and locomotion (velocity and directionality). Data were collected by sequential microphotography and analyzed by computer assisted morphometry. Types I and III collagen, hyaluronate and heparan sulfate had a slowing down effect on cell proliferation and patterning. The inhibitory effect of type I collagen was also detected in mixtures with glycosaminoglycans. The other components had no effect. While the smallest spreading was observed on fibronectin substrate, the largest was recorded on chondroitin-6 sulfate and heparan sulfate. The slowest velocity of locomotion was measured on fibronectin, types I and IV collagen and a mixture of type I collagen and chondroitin-6 sulfate. The fastest speed was recorded on chondroitin-4 sulfate. These effects are discussed in view of our knowledge of the role of the dermis in the development of skin and cutaneous appendages, and in the light of the morphogenetically related microheterogeneous distribution of collagens, fibronectin and various glycosaminoglycans in the developing skin.  相似文献   

20.
Evidence has accumulated that di- and trisialogangliosides are involved in the interaction of cells with fibronectin. We have therefore tested the ability of variants of BALB/c 3T3 deficient in such gangliosides to organize a fibronectin matrix and to spread on fibronectin-coated substrates. Whereas BALB/c 3T3 cells contained gangliosides GM3, GM1, and GD1a, direct chemical analysis showed that five out of six variants isolated contained no detectable GD1a. By the overlaying of thin layer chromatograms of cellular gangliosides with 125I-cholera toxin, these variants were also found to lack ganglioside GM1. In contrast, the sialogalactoprotein profile of these cells, analyzed using an 125I-ricin/SDS polyacrylamide gel overlay technique, was similar to that of the parent cell line. All variants organized an extensive fibronectin matrix comparable to that of BALB/c 3T3, as shown using either immunofluorescence or lactoperoxidase-catalyzed iodination. The variants could also spread on fibronectin-coated substrates and adopt a morphology similar to that of BALB/c 3T3 cells, with little or no difference in the concentration of fibronectin required for 50% cell spreading. Cell spreading of the variants was accompanied by the formation of focal contacts and microfilament bundles, in a manner closely resembling that seen with BALB/c 3T3 cells. Treatment of BALB/c 3T3 cells with neuraminidase, which converts much of the cellular GD1a to GM1, did not affect cell spreading on fibronectin. The results clearly demonstrate that complex gangliosides are not essential for retention of a fibronectin matrix or for spreading on fibronectin-coated substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号