首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most prominent tyrosyl-phosphorylated protein in maturing sea star oocytes was identified as the 44 kDa myelin basic protein (MBP) kinase p44mpk. Immunoblotting studies with anti-phosphotyrosine PY-20 antibody and phosphoamino acid analysis of in vivo [32P]phosphate-labelled p44mpk showed that the tyrosyl phosphorylation of the kinase correlated with a greater than 10-fold stimulation of its MBP phosphotransferase activity. The activation of p44mpk was reversed almost completely by purified preparations of the protein-tyrosyl phosphatases CD45 and 1B. Purified p44mpk has previously been shown to undergo autophosphorylation in vitro on seryl residues and this was associated with further enhancement of its MBP phosphorylating activity (Sanghera et al. (1991) J. Biol. Chem. 266, 6700-6707). p44mpk also underwent seryl phosphorylation during oocyte maturation, and the protein-seryl/threonyl phosphatase 2A reversed partially the maturation-associated stimulation of its MBP kinase activity. The properties of p44mpk resemble the murine 42 kDa mitogen-activated protein kinase (p42mapk). While p44mpk may feature the phosphorylatable tyrosyl residue that is critical for activation in p42mapk, it lacks the upstream threonyl phosphorylation site that is also required for p42mapk activity (Payne et al. (1991) EMBO J: 10, 885-892). These findings indicate partial differences in the regulatory mechanisms that govern the activities of these isozymes.  相似文献   

2.
Meiotic maturation of Xenopus and sea star oocytes involves the activation of a number of protein-serine/threonine kinase activities, including a myelin basic protein (MBP) kinase. A 44-kDa MBP kinase (p44mpk) purified from mature sea star oocytes is shown here to be phosphorylated at tyrosine. Antiserum to purified sea star p44mpk was used to identify antigenically related proteins in Xenopus oocytes. Two tyrosine-phosphorylated 42-kDa proteins (p42) were detected with this antiserum in Xenopus eggs. Xenopus p42 chromatographs with MBP kinase activity on a Mono Q ion-exchange column. Tyrosine phosphorylation of Xenopus p42 approximately parallels MBP kinase activity during meiotic maturation. These results suggest that related MBP kinases are activated during meiotic maturation of Xenopus and sea star oocytes. Previous studies have suggested that Xenopus p42 is related to the mitogen-activated protein (MAP) kinases of culture mammalian cells. We have cloned a MAP kinase relative from a Xenopus ovary cDNA library and demonstrate that this clone encodes the Xenopus p42 that is tyrosine phosphorylated during oocyte maturation. Comparison of the sequences of Xenopus p42 and a rat MAP kinase (ERK1) and peptide sequences from sea star p44mpk indicates that these proteins are close relatives. The family members appear to be tyrosine phosphorylated, and activated, in different contexts, with the murine MAP kinase active during the transition from quiescence to the G1 stage of the mitotic cell cycle and the sea star and Xenopus kinases being active during M phase of the meiotic cell cycle.  相似文献   

3.
Myelin basic protein serves as a convenient substrate for detection of a 44 kDa protein-serine/threonine kinase (p44mpk) that is activated near the time of germinal vesicle breakdown in maturing echinoderm and amphibian oocytes. In vitro phosphorylation by purified p44mpk from sea star oocytes was primarily on threonine residues on a single tryptic peptide of bovine brain myelin basic protein. Amino acid composition analysis of the isolated posphopeptide revealed that it was rich in proline residues. Automated solid-phase sequencing by Edman degradation identified the major site as Thr-97 in the sequence NIVTPRTPPPSQGK, which corresponds to residues 91-104 in bovine brain myelin basic protein. Thr-94 was also phosphorylated by p44mpk to a very minor extent.  相似文献   

4.
Synthetic peptides have been used to define the consensus amino acid sequence for substrate recognition by the meiosis-activated myelin basic protein (MBP) kinase (p44mpk), which was purified from maturing sea star oocytes. This protein kinase shares many properties with the mitogen-activated microtubule-associated protein-2 kinase (p42mapk) in vertebrates. Recently, Thr-97 in the tryptic fragment KNIVTPRTPPPSQGK of bovine MBP was identified as the major site of phosphorylation by p44mpk (Sanghera, J. S., Aebersold, R., Morrison, H. D., Bures, E. J., and Pelech, S. L. (1990) FEBS Lett. 273, 223-226). Synthetic peptides modeled after this sequence revealed that the presence of a proline residue C-terminal (+1 position) to the phosphorylatable threonine (or serine) residue was critical for recognition by p44mpk. Although not essential, a proline residue located at the -2 position enhanced the Vmax of peptide phosphorylation. Basic, acidic, and non-polar residues were equally tolerated at the -1 position. The presence of an amino acid residue at position -3 also increased peptide phosphorylation. Thus, the optimum consensus sequence for phosphorylation by p44mpk was defined as Pro-X-(Ser/Thr)-Pro, where X is a variable amino acid residue, but ideally not a Pro. Peptides that included this sequence were phosphorylated by p44mpk with Vmax values approaching 1 mumol.min-1.mg-1 and with apparent Km values of approximately 1 mM). Pseudosubstrate peptides in which the phosphorylatable residue was replaced by valine or alanine were weak inhibitors of p44mpk (apparent Ki values of approximately 3 mM). Over 40 distinct protein kinases contain Pro-X-(Ser/Thr)-Pro sequences including the human receptors for insulin and epidermal growth factor, and kinases encoded by the human proto-oncogenes abl, neu, and raf-1, and Schizosaccharomyces pombe cell cycle control genes ran-1 and wee-1. Multiple putative sites were also identified in rat microtubule-associated protein-2, human retinoblastoma protein, human tau protein, and Drosophila myb protein and RNA polymerase II.  相似文献   

5.
Two ribosomal protein S6 kinases (i.e., pp52(S6K) and pp70(S6K)) of the p70 S6 kinase family were markedly activated during meiotic maturation of Pisaster ochraceus sea star oocytes. A rapid protocol was developed for the purification from the oocyte cytosol of pp52(S6K) by approximately 50,000-fold with a specific enzyme activity of 1.6 micromol per min per mg. The purified enzyme apparently featured the N- and C-terminal regions of pp70(S6K) as it immunoreacted with antibodies directed to peptides patterned after these amino acid sequences in mammalian pp70(S6K). pp52(S6K) was inhibited by fluoride (IC(50) approximately 60 mM), but was relatively insensitive to beta-glycerolphosphate, EGTA, dithiothreitol, spermine, heparin, NaCl, and metal ions such as Mn(2+), Zn(2+), and Ca(2+). The consensus sequence for substrate phosphorylation was determined to be RXXSXR, which was partially distinct from mammalian p70(S6K) in its requirement for an amino-terminal arginine. Phosphorylation of ribosomal protein S6 by p52(S6K) occurred exclusively on serine on at least five tryptic peptides. Inhibition of sea star p52(S6K) phosphotransferase activity after treatment with protein serine/threonine phosphatases confirmed that p52(S6K) was still regulated by phosphorylation. The sea star S6 kinase was purified to near homogeneity with the regulatory and catalytic subunits of protein-serine phosphatase 2A and the heat shock protein 60. The association of an S6 kinase with phosphatase 2A was confirmed by coimmunoprecipitation of S6 kinase activity with phosphatase 2A-specific antibodies. The purified S6 kinase and the sea star oocyte system will be useful for analysis of upstream and downstream signaling events that lead to phosphorylation of the S6 protein and other targets.  相似文献   

6.
Smooth muscle caldesmon was phosphorylated in vitro by sea star p44mpk up to 2.0 mol of phosphate/mol of protein at both Ser and Thr residues. The phosphorylation sites were contained mainly in the COOH-terminal 10-kDa cyanogen bromide fragment which houses the binding sites for calmodulin, tropomyosin, and F-actin. Tryptic peptide maps of 32P-labeled caldesmon by p44mpk and p34cdc2 showed that while both enzymes recognized similar sites of phosphorylation, they have different preferred sites. Phosphorylation of caldesmon attenuated slightly its interaction with actin and had no effect on its binding to calmodulin and tropomyosin. Smooth muscle cell extracts from chicken gizzard and rat aorta contained 42- and 44-kDa proteins, respectively, which were cross-reactive with an antibody to sea star p44mpk. Immunoprecipitates from gizzard and aorta cell extracts, generated with the p44mpk antibody, possessed kinase activities toward myelin basic protein as well as caldesmon. These results suggest that MAP kinase may have functions in the differentiated smooth muscle cells distinct from those involved in the cell cycle.  相似文献   

7.
Mitogen-activated protein kinase (p42mapk) becomes transiently activated after treatment of serum-starved murine Swiss 3T3 cells or EL4 thymocytes with a diversity of mitogens. Similarly, a meiosis-activated protein kinase (p44mpk) becomes stimulated during maturation of sea star oocytes induced by 1-methyladenine. Both p42mapk and p44mpk have been identified as protein-serine/threonine kinases that are activated as a consequence of their phosphorylation. Because homologous protein kinases may play essential roles in both mitogenesis and oogenesis, we have compared in detail the biochemical properties of these two kinases. We find that these kinases are highly related based on their in vitro substrate specificities, sensitivity to inhibitors, and immunological cross-reactivity. However, they differ in apparent molecular weight and can be separated chromatographically, indicating that the two enzymes are distinct. Furthermore, in the course of this investigation, we have identified a 44-kDa protein kinase in mitogen-stimulated Swiss mouse 3T3 cells and EL4 thymocytes that co-purifies with p44mpk and thus appears to be a closer homolog of the sea star enzyme. Analysis of these protein kinases clarifies the relationships between a set of tyrosine-phosphorylated 41-45-kDa proteins present in mitogen-stimulated cells (Martinez, R., Nakamura., K. D., and Weber, M. J. (1982) Mol. Cell. Biol. 2, 653-655; Cooper, J. A., and Hunter, T. (1984) Mol. Cell. Biol. 4, 30-37), two myelin basic protein kinases identified in epidermal growth factor-treated Swiss mouse 3T3 cells (Ahn, N. G., Weiel, J. E., Chan, C. P., and Krebs, E. G. (1990) J. Biol. Chem. 265, 11487-11494), and p42mapk. Our work points to the existence of a group of related serine/threonine protein kinases, regulated by tyrosine phosphorylation and functioning at different stages of the cell cycle.  相似文献   

8.
Kinex antibody microarray analyses was used to investigate the regulation of 188 protein kinases, 24 protein phosphatases, and 170 other regulatory proteins during meiotic maturation of immature germinal vesicle (GV+) pig oocytes to maturing oocytes that had completed meiosis I (MI), and fully mature oocytes arrested at metaphase of meiosis II (MII). Increases in apparent protein levels of protein kinases accounted for most of the detected changes during the GV to MI transition, whereas reduced protein kinase levels and increased protein phosphorylation characterized the MI to MII transition. During the MI to MII period, many of the MI-associated increased levels of the proteins and phosphosites were completely or partially reversed. The regulation of these proteins were also examined in parallel during the meiotic maturation of bovine, frog, and sea star oocytes with the Kinex antibody microarray. Western blotting analyses confirmed altered expression levels of Bub1A, IRAK4, MST2, PP4C, and Rsk2, and the phosphorylation site changes in the kinases Erk5 (T218 + Y220), FAK (S722), GSK3-beta (Y216), MEK1 (S217 + S221) and PKR1 (T451), and nucleophosmin/B23 (S4) during pig oocyte maturation.  相似文献   

9.
We have characterized a serine/threonine protein kinase from Xenopus metaphase-II-blocked oocytes, which phosphorylates in vitro the microtubule-associated protein 2 (MAP2). The MAP2 kinase activity, undetectable in prophase oocytes, is activated during the progesterone-induced meiotic maturation (G2-M transition of the cell cycle). p-Nitrophenyl phosphate, a phosphatase inhibitor, is required to prevent spontaneous deactivation of the MAP2 kinase in crude preparations; conversely, the partially purified enzyme can be in vitro deactivated by the low-Mr polycation-stimulated (PCSL) phosphatase (also termed protein phosphatase 2A2), working as a phosphoserine/phosphothreonine-specific phosphatase and not as a phosphotyrosyl phosphatase indicating that phosphorylation of serine/threonine is necessary for its activity. S6 kinase, a protein kinase activated during oocyte maturation which phosphorylates in vitro ribosomal protein S6 and lamin C, can be deactivated in vitro by PCSL phosphatase. S6 kinase from prophase oocytes can also be activated in vitro in fractions known to contain all the factors necessary to convert pre-M-phase-promoting factor (pre-MPF) to MPF. Active MAP2 kinase can activate in vitro the inactive S6 kinase present in prophase oocytes or reactivate S6 kinase previously inactivated in vitro by PCSL phosphatase. These data are consistent with the hypothesis that the MAP2 kinase is a link of the meiosis signalling pathway and is activated by a serine/threonine kinase. This will lead to the regulation of further steps in the cell cycle, such as microtubular reorganisation and S6 kinase activation.  相似文献   

10.
It is known that the 40s ribosomal protein S6 undergoes a dramatic increase in its level of phosphorylation during Xenopus oocyte meiotic maturation in response to progesterone stimulation. During prophase arrest, the majority of S6 has 0 moles phosphate per mole protein; this increases to 4-5 moles phosphate per mole protein by the time of germinal vesicle breakdown (GVBD). Our in vitro and in vivo studies indicate that the accumulation of phosphate on S6 is the net result of a 4-5-fold increase in S6 kinase activity and a 30-50% decrease in the rate of dephosphorylation and/or turnover of phosphate groups on S6 in maturing oocytes. In addition, the level of phosphorylation of S6 on 80s monosomes injected into non-hormone-stimulated oocytes was unexpectedly high. This indicates that the S6 kinase/phosphatase ratio in prophase arrested oocytes is higher than anticipated from previous studies. This observation implies that the majority of the oocyte ribosomes may be sequestered from any S6 kinase during meiotic prophase. Furthermore, these observations suggest that a portion of the increased accumulation of phosphate on S6 may be the result of increased accessibility of the ribosomes to S6 kinase during oocyte meiotic maturation.  相似文献   

11.
The efficient activation of p90rsk by MAP kinase requires their interaction through a docking site located at the C-terminal end of p90rsk. The MAP kinase p42mpk1 can associate with p90rsk in G2-arrested but not in mature Xenopus oocytes. In contrast, an N-terminally truncated p90rsk mutant named D2 constitutively interacts with p42mpk1. In this report we show that expression of D2 inhibits Xenopus oocyte maturation. The inhibition requires the p42mpk1 docking site. D2 expression uncouples the activation of p42mpk1 and p34cdc2/cyclin B in response to progesterone but does not prevent signaling through p90rsk. Instead, D2 interferes with a p42mpk1-triggered pathway, which regulates the phosphorylation and activation of Plx1, a potential activator of the Cdc25 phosphatase. This new pathway that links the activation of p42mpk1 and Plx1 during oocyte maturation is independent of p34cdc2/cyclin B activity but requires protein synthesis. Using D2, we also provide evidence that the sustained activation of p42mpk1 can trigger nuclear migration in oocytes. Our results indicate that D2 is a useful tool to study MAP kinase function(s) during oocyte maturation. Truncated substrates such as D2, which constitutively interact with MAP kinases, may also be helpful to study signal transduction by MAP kinases in other cellular processes.  相似文献   

12.
Previous studies have shown that increased ribosomal protein S6 kinase activity in unfertilized Xenopus eggs can be resolved by DEAE-Sephacel chromatography into two peaks, designated S6 kinase I and S6 kinase II. We show here that antibody against bacterially expressed S6 kinase II cross-reacts with S6 kinase I. Both S6 kinases undergo marked phosphorylation when they are activated during oocyte maturation, and both become deactivated and dephosphorylated upon activation of eggs. Immunoblotting of extracts of oocytes reveals that all S6 kinase molecules undergo a decrease and increase in electrophoretic mobility upon activation and deactivation, respectively. The increase in electrophoretic mobility can be produced in vitro by incubation of activated S6 kinase with purified phosphatases. Phosphoamino acid analysis of S6 kinase II labeled in vivo during maturation reveals both phosphoserine and phosphothreonine, and phosphopeptide maps suggest that several kinases may phosphorylate and activate S6 kinase II in vivo. These results demonstrate that, during oocyte maturation and early development, S6 kinase activation and deactivation are regulated by phosphorylation and dephosphorylation, suggesting a probable mechanism for S6 kinase regulation in other mitogenically stimulated cells.  相似文献   

13.
A synthetic peptide modeled after the major threonine (T669) phosphorylation site of the epidermal growth factor (EGF) receptor was an efficient substrate (apparent Km approximately 0.45 mM) for phosphorylation by purified p44mpk, a MAP kinase from sea star oocytes. The peptide was also phosphorylated by a related human MAP kinase, which was identified by immunological criteria as p42mapk. Within 5 min of treatment of human cervical carcinoma A431 cells with EGF or phorbol myristate acetate (PMA), a greater than 3-fold activation of p42mapk was measured. However, Mono Q chromatography of A431 cells extracts afforded the resolution of at least three additional T669 peptide kinases, some of which may be new members of the MAP kinase family. One of these (peak I), which weakly adsorbed to Mono Q, phosphorylated myelin basic protein (MBP) and other MAP kinase substrates, immunoreacted as a 42 kDa protein on Western blots with four different MAP kinase antibodies, and behaved as a approximately 45 kDa protein upon Superose 6 gel filtration. Another T669 peptide kinase (peak IV), which bound more tightly to Mono Q than p42mapk (peak II), exhibited a nearly identical substrate specificity profile to that of p42mapk, but it immunoreacted as a 40 kDa protein only with anti-p44mpk antibody on Western blots, and eluted from Superose 6 in a high molecular mass complex of greater than 400 kDa. By immunological criteria, the T669 peptide kinase in Mono Q peak III was tentatively identified as an active form of p34cdc2 associated with cyclin A. The Mono Q peaks III and IV kinases were modestly stimulated following either EGF or PMA treatments of A431 cells, and they exhibited a greater T669 peptide/MBP ratio than p42mapk. These findings indicated that multiple proline-directed kinases may mediate phosphorylation of the EGF receptor.  相似文献   

14.
A meiosis-activated myelin basic protein (MBP) kinase was purified approximately 8700-fold from soluble post-germinal vesicle breakdown extracts from maturing oocytes of the sea star Pisaster ochraceus. Purification to apparent homogeneity was achieved by sequential chromatography on DEAE-cellulose, hydroxylapatite, phosphocellulose, phenyl-Sepharose, heparin-Sepharose, polylysine-Sepharose, and Mono-Q. The final product exhibited an apparent molecular mass of approximately 42 kDa by both native gradient and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and this precisely correlated with the chromatographic behavior of the recovered MBP kinase activity on a Superose 6/12 column. The kinase utilized the MBP as the major substrate with little or no phosphorylation of histones (H1, H2A, or H2B), casein, phosvitin, protamine, or 40 S ribosomal proteins. The purified enzyme was relatively insensitive to high concentrations of beta-glycerol phosphate, calmodulin, EGTA, NaCl, sodium fluoride, dithiothreitol, spermine, and heparin but was quite sensitive to inhibition by metal ions such as Mn2+, Zn2+, and Ca2+. The true Km values for ATP and myelin basic protein were determined to be 58 and 25 microM, respectively, using double-reciprocal plots. The purified enzyme was unable to utilize GTP in place of ATP. The enzyme was shown to rapidly undergo autophosphorylation. The autophosphorylation was sensitive to alkali treatment implying that phosphate was incorporated on serine/threonine residues. The properties of this MBP kinase are reminiscent of a protein kinase that is also activated in a cyclic fashion at M-phase during the early cell divisions of sea star and sea urchin embryos (Pelech, S. L., Tombe, R., Meijer, L., and Krebs, E. G. (1988) Dev. Biol. 130, 26-36).  相似文献   

15.
The myelin basic protein (MBP)-phosphorylating enzymes present during maturation and early embryogenesis of the sea star (Pisaster ochraceus) were investigated. The major maturation-activated MBP kinase (p45 Mapk) was molecularly cloned based on tryptic sequence information obtained with the purified enzyme and shown to be highly related to human Erk1 with 76% amino acid identity. Kinase assays and immunoblotting studies revealed that Mapk remained highly active until 12 h post-fertilization (PF), after which it declined. By 4 days PF, Mapk protein was no longer detectable. At 3 h PF, about half of the detectable MBP phosphotransferase activity could be attributed to a 75 kDa protein kinase that was distinct from Mapk. Like Mapk, this protein phosphorylated MBP mostly on threonine residues, but it failed to phosphorylate a peptide (APRTPGGRR) based upon the Thr-97 MAP kinase phosphorylation site in MBP. Rather, it phosphorylated a peptide (AAQKRPSQRTKYLA) patterned after the N-terminus of MBP. Our studies also showed a dramatic increase in MBP phosphotransferase activity occurred by 4 days PF that arose from a third kinase that phosphorylated MBP solely on serine residues. This kinase exhibited the following substrate substrate preference: AAQKRPSQRTKYLA, peptide substrate for S6 kinases (AKRRRLSSLRASTSKSESSQK) > MBP > histone H1 > prota-mine > casein > APRTPGGRR. This kinase was not appreciably affected by addition of phosphatidylserine/diacylglycerol, or the staurosporine analogue Roche Compound 3, but it was partly inhibited by a protein kinase C pseudosubstrate peptide. Gel filtration analysis revealed an apparent molecular mass of 41 kDa for the enzyme. Therefore, at least two novel MBP-phosphorylating enzymes distinct from Mapk are preferentially activated following fertilization and early embryogenesis of the sea star.  相似文献   

16.
S6 kinases I and II have been purified previously from Xenopus eggs and shown to be activated by phosphorylation on serine and threonine residues. An S6 kinase clone, closely related to S6 kinase II, was subsequently identified and the protein product was expressed in a baculovirus system. Using this protein, termed "rsk" for Ribosomal Protein S6 Kinase, as a substrate, we have purified to homogeneity from unfertilized Xenopus eggs a 41-kDa serine/threonine kinase termed rsk kinase. Both microtubule-associated protein-2 and myelin basic protein are good substrates for rsk kinase, whereas alpha-casein, histone H1, protamine, and phosvitin are not. rsk kinase is inhibited by low concentrations of heparin as well as by beta-glycerophosphate and calcium. Activation of rsk kinase during Xenopus oocyte maturation is correlated with phosphorylation on threonine and tyrosine residues. However, in vitro, rsk kinase undergoes autophosphorylation on serine, threonine, and tyrosine residues, identifying it as a "dual specificity" enzyme. Purified rsk kinase can be inactivated in vitro by either a 37-kDa T-cell protein-tyrosine phosphatase or the serine/threonine protein phosphatase 2A. Phosphatase-treated S6KII can be reactivated by rsk kinase, and S6 kinase activity in resting oocyte extracts increases significantly when purified rsk kinase is added. The availability of purified rsk kinase will enhance study of the signal transduction pathway(s) regulating phosphorylation of ribosomal protein S6 in Xenopus oocytes.  相似文献   

17.
The meiotic maturation of Xenopus laevis oocytes is induced in vitro by progesterone which interacts at the cell surface level. A cell-free membrane preparation (P-10,000) incorporated 32P from [gamma-32P]ATP, mostly into two proteins, Mr approximately 56,000 and approximately 48,000 (as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Progesterone, added in vitro, specifically inhibited the phosphorylation of the Mr approximately 48,000 protein (named p48). Half-maximal inhibition of p48 phosphorylation occurred with progesterone approximately 8 microM, in good correlation with hormone concentration inducing oocyte maturation. The effect was not due to stimulation of protein phosphatase activity. The potent maturation inducers testosterone and deoxycorticosterone also inhibited p48 phosphorylation, whereas biologically inactive steroids or cholesterol did not. p48 phosphorylation was not affected by cAMP, cGMP, polyamines, calmodulin, and phospholipids + diolein. EGTA had a stimulatory effect which was reversed by added Ca2+. The inhibitory effects of progesterone and Ca2+ were additive, suggesting two distinct sites of action. Phospho-p48 was not detected in yolk platelets, microsomes, and cytosol of oocytes. Contrary to p48 itself, the p48 kinase activity was loosely associated with P-10,000. Progesterone inhibited p48 phosphorylation produced by either cytosol or exogenous pure catalytic subunit of cAMP-dependent protein kinase. Conversely, phosphorylation of casein and histones by protein kinase activity present in P-10,000 was not modified by progesterone. It is then suggested that progesterone regulates p48 phosphorylation by affecting the protein substrate in the membrane, rather than by inhibiting the protein kinase enzyme itself. The data demonstrate a direct effect (not mediated by change of protein synthesis) of steroids on p48 phosphorylation in the plasma membrane, and they suggest that this protein could be implicated in the initial action of progesterone on oocyte maturation.  相似文献   

18.
The main limit of in vitro production of domestic mammal embryos comes from the low capacity of in vitro matured oocytes to develop after fertilization. As soon as they are separated from follicular environment, oocytes spontaneously resume meiosis without completion of their terminal differentiation. Roscovitine (ROS), an inhibitor of M-phase promoting factor (MPF) kinase activity reversibly blocks the meiotic resumption in vitro. However, in cattle maturing oocytes several cellular events such as protein synthesis and phosphorylation, chromatin condensation and nuclear envelope folding escape ROS inhibition suggesting the alternative pathways in oocyte maturation. We compared the level of synthesis and phosphorylation of several protein kinases during bovine cumulus oocyte complex (COC) maturation in vitro in the presence or not of epidermal growth factor (EGF) and ROS. We showed that during the EGF-stimulated maturation, ROS neither affected the decrease of EGF receptor (EGFR) nor did inhibit totally its phosphorylation in cumulus cells and also did not totally eliminate tyrosine phosphorylation in oocytes. However, ROS did inhibit the Phosphoinositide 3-kinase (PI3) activity when oocytes mature without EGF. Accumulation of Akt/PKB (protein kinase B), JNK1/2 (jun N-terminal kinases) and Aurora-A in oocytes during maturation was not affected by ROS. However, the phosphorylation of Akt but not JNKs was diminished in ROS-treated oocytes. Thus, PI3 kinase/Akt, JNK1/2 and Aurora-A are likely to be involved in the regulation of bovine oocyte maturation and some of these pathways seem to be independent to MPF activity and meiotic resumption. This complex regulation may explain the partial meiotic arrest of ROS-treated oocytes and the accelerated maturation observed after such treatment.  相似文献   

19.
Protein phosphatases 1 and 2B from rabbit skeletal muscle were found to catalyze the dephosphorylation of ribosomal protein S6 in vitro. Phosphorylation of protein phosphatase-1 by the transforming protein of Rous sarcoma virus, pp60v-src, abolished S6 dephosphorylation by the purified enzyme. Analysis of the dephosphorylation of phosphorylase a and phosphorylase kinase in Xenopus oocyte extracts and after microinjection indicated the presence of oocyte enzymes similar to protein phosphatases-1 and -2B. Studies with 32P-labeled 40 S ribosomal subunits suggested that these enzymes were functioning as S6 phosphatases in oocytes. These findings support the hypothesis that regulation of protein phosphatase activity may be involved in the increase in S6 phosphorylation observed after mitogenic stimulation.  相似文献   

20.
A burst of protein phosphorylation and an appearance of maturation-promoting factor have been reported to occur shortly before germinal vesicle (nucleus) breakdown (GVBD) in 1-methyladenine-induced oocyte maturation of starfish. To detect if a protein kinase is activated before GVBD, protein kinase activity was compared in maturing oocytes which were just undergoing GVBD and immature oocytes of Asterina pectinifera. The oocytes were homogenized in a buffer modified from that used for extracting amphibian maturation-promoting factor. When the supernatant protein of homogenized immature oocytes was used as a substrate, protein kinase activity in the supernatant of the maturing oocytes was 7-fold higher than that of immature oocytes. The protein kinase in the supernatant of the maturing oocytes showed a high substrate specificity for histone H1 among the exogenous substrates examined, and the activity of the maturing oocytes for histone H1 was 6- to 7-fold higher than that of immature oocytes. The protein kinase detected in the maturing oocytes was very labile and was inhibited neither by ethylene glycol bis(β-aminoethyl ether)N, N, N′, N′-tetraacetic acid nor by the heat-stable inhibitor protein of cyclic AMP-dependent protein kinase. These results indicate that a calcium- and cyclic AMP-independent, labile “maturation-specific protein kinase” appeared before GVBD in maturing oocytes, and suggest its participation in the phosphorylation burst in vivo. The possible correlation of this kinase with maturation-promoting factor and chromosome condensation was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号