首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary Evolutionary stable dispersal and wing muscle histolysis strategies are studied in the waterstriderGerris thoracicus. These strategies relate to spreading reproductive risk. Overwintering individuals have the choice of dispersing to either a brackish sea bay or a rock pool habitat. The former is reproductively more favorable than the latter during warm dry years and less favorable during cool wet years. After spring migration, individuals may histolyse their flight muscles and lay all their eggs in one pool or they may retain their flight ability and lay fewer eggs in total but spread them in several pools. We use a simple two-habitat model to examine the question of habitat dispersal. Our results indicate that, although the value of the evolutionary stable dispersal depends on the degree of variability in the environment and on the probability of local extinctions in either habitat, the population always disperses to both habitats as a consequence of density dependent growth. We use a more detailed multiple-rockpool habitat model to examine the question of wing muscle histolysis as a response to density dependence. Our results indicate that a wing muscle histolysis response to population density is an evolutionarily stable strategy when compared with the two alternatives of females always histolysing or never histolysing their flight muscles. The application of evolutionarily stable theory to stochastic problems presents a number of difficulties. We discuss these difficulties in the context of computing evolutionarily stable strategies for the problems at hand.  相似文献   

2.
We investigate how age-structure and differences in certain demographic traits between residents and immigrants of a single species act to determine the evolutionarily stable dispersal strategy in a two-patch environment that is heterogeneous in space but constant in time. These two factors have been neglected in previous models of the evolution of dispersal, which generally consider organisms with very simple life-cycles and assume that, whatever their origin, individuals in a given habitat have the same bio-demographic characteristics. However, there is increasing empirical evidence that dispersing individuals have different demographic properties from phylopatric ones. We develop a matrix model in which recruitment depends on local population densities. We assume that dispersal entails a proportional cost to immigrant fecundity, which can be compensated by differences in survival rates between immigrants and residents. The evolutionarily stable strategies (ESS) for dispersal are identified using a combination of analytical expressions and numerical simulations. Our results show that philopatry is selected (1) when dispersal rates do not vary in space, (2) when the metapopulation is a source-sink system and (3) when dispersal rates vary in space (asymmetric dispersal) and immigrants do not compensate for their reduced fecundity. We observe that non-zero asymmetric dispersal rates may be evolutionarily stable when (1) immigrants and residents are demographically alike and (2) immigrants compensate totally for their reduced fecundity through an increase in adult survival. Under these conditions, we find that the ESS occurs when the fitnesses at equilibrium in the two habitats, measured in our model by the realized reproductive rates, are each equal to unity. A comparison with previous studies suggests a unifying rule for the evolution of dispersal: the dispersal rates which permit the spatial homogenization of fitnesses are ESSs. This condition provides new insight into the evolutionary stability of source-sink systems. It also supports the hypothesis that immigrants have adapted demographic strategies, rather than the hypothesis that dispersal is costly and immigrants are at a disavantage compared with residents.  相似文献   

3.
We examine the evolutionary stability of year-round residency in territorial populations, where breeding sites are a limiting resource. The model links individual life histories to the population-wide competition for territories and includes spatial variation in habitat quality as well as a potential parent-offspring conflict over territory ownership. The general form of the model makes it applicable to the evolution of dispersal, migration, partial migration, and delayed dispersal (offspring retention). We show that migration can be evolutionarily stable only if year-round residency in a given area would produce a sink population, where mortality exceeds reproduction. If this applies to a fraction of the breeding habitat only, partial migration is expected to evolve. In the context of delayed dispersal, habitat saturation has been argued to form an ecological constraint on independent breeding, which favors offspring retention and cooperative breeding. We show that habitat saturation must be considered as a dynamic outcome of birth, death, and dispersal rates in the population, rather than an externally determined constraint. Although delayed dispersal often associates with intense competition for territories, life-history traits have direct effects on stable dispersal strategies, which can often override the effect of habitat saturation. As an example, high survival of floaters selects against delayed dispersal, even though it increases the number of competitors for each breeding vacancy (the "habitat saturation factor"). High survival of territory owners, by contrast, generally favors natal philopatry. We also conclude that spatial variation in habitat quality only rarely selects for delayed dispersal. Within a population, however, offspring retention is more likely in high-quality territories.  相似文献   

4.
Ross Cressman  Vlastimil Křivan 《Oikos》2010,119(8):1231-1242
In classical games that have been applied to ecology, individual fitness is either density independent or population density is fixed. This article focuses on the habitat selection game where fitness depends on the population density that evolves over time. This model assumes that changes in animal distribution operate on a fast time scale when compared to demographic processes. Of particular interest is whether it is true, as one might expect, that resident phenotypes who use density‐dependent optimal foraging strategies are evolutionarily stable with respect to invasions by mutant strategies. In fact, we show that evolutionary stability does not require that residents use the evolutionarily stable strategy (ESS) at every population density; rather it is the combined resident–mutant system that must be at an evolutionary stable state. That is, the separation of time scales assumption between behavioral and ecological processes does not imply that these processes are independent. When only consumer population dynamics in several habitats are considered (i. e. when resources do not undergo population dynamics), we show that the existence of optimal foragers forces the resident‐mutant system to approach carrying capacity in each habitat even though the mutants do not die out. Thus, the ideal free distribution (IFD) for the single‐species habitat selection game becomes an evolutionarily stable state that describes a mixture of resident and mutant phenotypes rather than a strategy adopted by all individuals in the system. Also discussed is how these results are affected when animal distribution and demographic processes act on the same time scale.  相似文献   

5.
Dispersal is a life‐history trait that can evolve under various known selective pressures as identified by a multitude of theoretical and empirical studies. Yet only few of them are considering the succession of mating and dispersal. The sequence of these events influences gene flow and consequently affects the dynamics and evolution of populations. We use individual‐based simulations to investigate the evolution of the timing of dispersal and mating, i.e. mating before or after dispersal. We assume a discrete insect metapopulation in a heterogeneous environment, where populations may adapt to local conditions and only females are allowed to disperse. We run the model assuming different levels of species habitat tolerance, carrying capacity, and temporal environmental variability. Our results show that in species with narrow habitat tolerance, low to moderate dispersal evolves in combination with mating after dispersal (post‐dispersal mating). With such a strategy dispersing females benefit from mating with a resident male, as their offspring will be better adapted to the local habitat conditions. On the contrary, in species with wide habitat tolerance higher dispersal rates in combination with pre‐dispersal mating evolves. In this case individuals are adapted to the ‘average’ habitat where pre‐dispersal mating conveys the benefit of carrying relatives’ genes into a new population. With high dispersal rates and large population size, local adaptation and kin structure both vanish and the temporal sequence of dispersal and mating may become a (nearly) neutral trait.  相似文献   

6.
Current evolutionary models of dispersal set the ends of a continuum where the number of individuals emigrating from a habitat either equals the number of individuals immigrating (balanced dispersal) or where emigrants flow from a source habitat to a corresponding sink. Theories of habitat selection suggest a more sophisticated conditional strategy where individuals disperse from habitats where they have the greatest impact on fitness to habitats where their per capita impact is lower. Asymmetries between periods of population growth and decline result in a reciprocating dispersal strategy where the direction of migration is reversed as populations wax and wane. Thus, for example, if net migration of individuals flows from high- to low-density habitats during periods of population growth, net migration will flow in the opposite direction during population decline. Stochastic simulations and analytical models of reciprocating dispersal demonstrate that fitness, carrying capacity, stochastic dynamics, and interference from dominants interact to determine whether dispersal is balanced between habitats, or whether one habitat or the other acts as a net donor of dispersing individuals. While the pattern of dispersal may vary, each is consistent with an underlying strategy of density-dependent habitat selection.  相似文献   

7.
A null model for habitat patch selection in spatially heterogeneous environments is the ideal free distribution (IFD), which assumes individuals have complete knowledge about the environment and can freely disperse. Under equilibrium conditions, the IFD predicts that local population growth rates are zero in all occupied patches, sink patches are unoccupied, and the fraction of the population selecting a patch is proportional to the patch's carrying capacity. Individuals, however, often experience stochastic fluctuations in environmental conditions and cannot respond to these fluctuations instantaneously. An evolutionary stability analysis for fixed patch-selection strategies reveals that environmental uncertainty disrupts the classical IFD predictions: individuals playing the evolutionarily stable strategy may occupy sink patches, local growth rates are negative and typically unequal in all patches, and individuals prefer higher-quality patches less than predicted by their carrying capacities. Spatial correlations in environmental fluctuations can enhance or marginalize these trends. The analysis predicts that continually increasing environmental variation first selects for range expansion, then selects for persisting coupled sink populations, and ultimately leads to regional extinction. In contrast, continually increasing habitat degradation first selects for range contraction and may select for persisting coupled sink populations before regional extinction. These results highlight the combined roles of spatial and temporal heterogeneity on the evolution of habitat selection.  相似文献   

8.
We address several conjectures raised in Cantrell et al. [Evolution of dispersal and ideal free distribution, Math. Biosci. Eng. 7 (2010), pp. 17-36 [ 9 ]] concerning the dynamics of a diffusion-advection-competition model for two competing species. A conditional dispersal strategy, which results in the ideal free distribution of a single population at equilibrium, was found in Cantrell et al. [ 9 ]. It was shown in [ 9 ] that this special dispersal strategy is a local evolutionarily stable strategy (ESS) when the random diffusion rates of the two species are equal, and here we show that it is a global ESS for arbitrary random diffusion rates. The conditions in [ 9 ] for the coexistence of two species are substantially improved. Finally, we show that this special dispersal strategy is not globally convergent stable for certain resource functions, in contrast with the result from [ 9 ], which roughly says that this dispersal strategy is globally convergent stable for any monotone resource function.  相似文献   

9.
A central question in the study of the evolution of dispersal is what kind of dispersal strategies are evolutionarily stable. Hastings (Theor Pop Biol 24:244-251, 1983) showed that among unconditional dispersal strategies in a spatially heterogeneous but temporally constant environment, the dispersal strategy with no movement is convergent stable. McPeek and Holt's (Am Nat 140:1010-1027, 1992) work suggested that among conditional dispersal strategies in a spatially heterogeneous but temporally constant environment, an ideal free dispersal strategy, which results in the ideal free distribution for a single species at equilibrium, is evolutionarily stable. We use continuous-time and discrete-space models to determine when the dispersal strategy with no movement is evolutionarily stable and when an ideal free dispersal strategy is evolutionarily stable, both in a spatially heterogeneous but temporally constant environment.  相似文献   

10.
We consider a two-species competition model in a one-dimensional advective environment, where individuals are exposed to unidirectional flow. The two species follow the same population dynamics but have different random dispersal rates and are subject to a net loss of individuals from the habitat at the downstream end. In the case of non-advective environments, it is well known that lower diffusion rates are favored by selection in spatially varying but temporally constant environments, with or without net loss at the boundary. We consider several different biological scenarios that give rise to different boundary conditions, in particular hostile and “free-flow” conditions. We establish the existence of a critical advection speed for the persistence of a single species. We derive a formula for the invasion exponent and perform a linear stability analysis of the semi-trivial steady state under free-flow boundary conditions for constant and linear growth rate. For homogeneous advective environments with free-flow boundary conditions, we show that populations with higher dispersal rate will always displace populations with slower dispersal rate. In contrast, our analysis of a spatially implicit model suggest that for hostile boundary conditions, there is a unique dispersal rate that is evolutionarily stable. Nevertheless, both scenarios show that unidirectional flow can put slow dispersers at a disadvantage and higher dispersal rate can evolve.  相似文献   

11.
I investigate how risk spreading in stochastic environments and adaptation to permanent properties of local habitats interplay in the simultaneous evolution of dispersal and habitat specialization. In a simple two-patch model, I find many types of locally evolutionarily stable attractors of dispersal and of a trait involved in habitat specialization, including a single habitat specialist and a coalition of two specialists with low dispersal, a generalist with high dispersal, and several types of dispersal polymorphisms. In general, only one attractor is a global evolutionarily stable strategy (ESS). In addition to the ESS analysis, I also present some examples of the dynamics of evolution that exhibit adaptive diversification by evolutionary branching.  相似文献   

12.
The effect of dispersal on population size and stability is explored for a population that disperses passively between two discrete habitat patches. Two basic models are considered. In the first model, a single population experiences density-dependent growth in both patches. A graphical construction is presented which allows one to determine the spatial pattern of abundance at equilibrium for most reasonable growth models and rates of dispersal. It is shown under rather general conditions that this equilibrium is unique and globally stable. In the second model, the dispersing population is a food-limited predator that occurs in both a source habitat (which contains a prey population) and a sink habitat (which does not). Passive dispersal between source and sink habitats can stabilize an otherwise unstable predator-prey interaction. The conditions allowing this are explored in some detail. The theory of optimal habitat selection predicts the evolutionarily stable distribution of a population, given that individuals can freely move among habitats so as to maximize individual fitness. This theory is used to develop a heuristic argument for why passive dispersal should always be selectively disadvantageous (ignoring kin effects) in a spatially heterogeneous but temporally constant environment. For both the models considered here, passive dispersal may lead to a greater number of individuals in both habitats combined than if there were no dispersal. This implies that the evolution of an optimal habitat distribution may lead to a reduction in population size; in the case of the predator-prey model, it may have the additional effect of destabilizing the interaction. The paper concludes with a discussion of the disparate effects habitat selection might have on the geographical range occupied by a species.  相似文献   

13.
Earlier models on the evolution of dispersal have suggested that evolutionarily stable dispersal rates should increase with the frequency of local extinctions. Most metapopulation models assume site saturation (i.e., no local population dynamics), yet the majority of species distributed as metapopulations rarely attain carrying capacity in all occupied patches. In this article, we relax this assumption and examine the evolutionarily stable dispersal rate under nonsaturated but still competitive demographic conditions. Contrary to previous predictions, we show that increasing local extinction rates may allow decreasing dispersal rates to evolve.  相似文献   

14.
The Ideal Free Distribution (IFD), introduced by Fretwell and Lucas in [Fretwell, D.S., Lucas, H.L., 1970. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheoretica 19, 16-32] to predict how a single species will distribute itself among several patches, is often cited as an example of an evolutionarily stable strategy (ESS). By defining the strategies and payoffs for habitat selection, this article puts the IFD concept in a more general game-theoretic setting of the “habitat selection game”. Within this game-theoretic framework, the article focuses on recent progress in the following directions: (1) studying evolutionarily stable dispersal rates and corresponding dispersal dynamics; (2) extending the concept when population numbers are not fixed but undergo population dynamics; (3) generalizing the IFD to multiple species.For a single species, the article briefly reviews existing results. It also develops a new perspective for Parker’s matching principle, showing that this can be viewed as the IFD of the habitat selection game that models consumer behavior in several resource patches and analyzing complications involved when the model includes resource dynamics as well. For two species, the article first demonstrates that the connection between IFD and ESS is now more delicate by pointing out pitfalls that arise when applying several existing game-theoretic approaches to these habitat selection games. However, by providing a new detailed analysis of dispersal dynamics for predator-prey or competitive interactions in two habitats, it also pinpoints one approach that shows much promise in this general setting, the so-called “two-species ESS”. The consequences of this concept are shown to be related to recent studies of population dynamics combined with individual dispersal and are explored for more species or more patches.  相似文献   

15.
We find the evolutionarily stable dispersal behaviour of a population that inhabits a heterogeneous environment where patches differ in safety (the probability that a juvenile individual survives until reproduction) and productivity (the total competitive weight of offspring produced by the local individual), assuming that these characteristics do not change over time. The body condition of clonally produced offspring varies within and between families. Offspring compete for patches in a weighted lottery, and dispersal is driven by kin competition. Survival during dispersal may depend on body condition, and competitive ability increases with increasing body condition. The evolutionarily stable strategy predicts that families abandon patches which are too unsafe or do not produce enough successful dispersers. From families that invest in retaining their natal patches, individuals stay in the patch that are less suitable for dispersal whereas the better dispersers disperse. However, this clear within-family pattern is often not reflected in the population-wide body condition distribution of dispersers or non-dispersers. This may be an explanation why empirical data do not show any general relationship between body condition and dispersal. When all individuals are equally good dispersers, then there exist equivalence classes defined by the competitive weight that remains in a patch. An equivalence class consists of infinitely many dispersal strategies that are selectively neutral. This provides an explanation why very diverse patterns found in body condition dependent dispersal data can all be equally evolutionarily stable.  相似文献   

16.
Long-distance migration is a widespread process evolved independently in several animal groups in terrestrial and marine ecosystems. Many factors contribute to the migration process and of primary importance are intra-specific competition and seasonality in the resource distribution. Adaptive migration in direction of increasing fitness should lead to the ideal free distribution (IFD) which is the evolutionary stable strategy of the habitat selection game. We introduce a migration game which focuses on migrating dynamics leading to the IFD for age-structured populations and in time varying habitats, where dispersal is costly. The model predicts migration dynamics between these habitats and the corresponding population distribution. When applied to Atlantic bluefin tunas, it predicts their migration routes and their seasonal distribution. The largest biomass is located in the spawning areas which have also the largest diversity in the age-structure. Distant feeding areas are occupied on a seasonal base and often by larger individuals, in agreement with empirical observations. Moreover, we show that only a selected number of migratory routes emerge as those effectively used by tunas.  相似文献   

17.
Estimating plant migration rates under habitat loss and fragmentation   总被引:8,自引:0,他引:8  
Changes in the global environment are modifying the geographical locations of habitats suitable for plant growth. The capacity of plants to migrate to sites of suitable environmental quality will strongly influence future distributions of plant diversity. However, it is not well understood how rates of plant migration are influenced by the habitat loss and habitat fragmentation that characterise contemporary landscapes. In this study we develop a model that can predict migration rates in both intact landscapes (potential migration rate) and in fragmented landscapes (realised migration rates). Migration rates in fragmented landscapes might be slower for many reasons. In this study we focus on two, non‐exclusive reasons. First, the processes that move seeds may break down in fragmented landscapes causing seeds to be dispersed shorter distances. Second, in fragmented landscapes some proportion of seeds will not be deposited in habitats suitable for recruitment. We describe the breakdown of dispersal processes as a competing risk between the factors influencing dispersal in intact landscapes and the factors that may disrupt dispersal processes in fragmented landscapes. We show how the parameters that influence dispersal in fragmented landscapes can be estimated, and how these estimates can be used to forecast migration rates using an integrodifference equation (IDE). The forecasts of the IDE described the effects of reduced dispersal distances adequately. However, the IDE produced biased estimates of the effects of a reduction in plant habitat on migration rates. Model analyses showed that, although we can expect realised migration rates to be lower than potential migration rates, we can also expect the sensitivity of migration rate to habitat loss to vary. In addition, simulations showed that the qualitative nature of the responses of migration rate to habitat loss were variable – some model species responded non‐linearly to habitat loss, others responded linearly. While our method provides guidelines for empirical data collection and model parameterisation, we recognise that obtaining these data will be challenging.  相似文献   

18.
Two competing populations in spatially heterogeneous but temporarily constant environment are investigated: one is subject to regular movements to lower density areas (random diffusion) while the dispersal of the other is in the direction of the highest per capita available resources (carrying capacity driven diffusion). The growth of both species is subject to the same general growth law which involves Gilpin–Ayala, Gompertz and some other equations as particular cases. The growth rate, carrying capacity and dispersal rate are the same for both population types, the only difference is the dispersal strategy. The main result of the paper is that the two species cannot coexist (unless the environment is spatially homogeneous), and the carrying capacity driven diffusion strategy is evolutionarily stable in the sense that the species adopting this strategy cannot be invaded by randomly diffusing population. Moreover, once the invasive species inhabits some open nonempty domain, it would spread over any available area bringing the native species diffusing randomly to extinction. One of the important technical results used in the proofs can be interpreted in the form that the limit solution of the equation with a regular diffusion leads to lower total population fitness than the ideal free distribution.  相似文献   

19.
We consider a mathematical model of two competing species for the evolution of conditional dispersal in a spatially varying, but temporally constant environment. Two species are different only in their dispersal strategies, which are a combination of random dispersal and biased movement upward along the resource gradient. In the absence of biased movement or advection, Hastings showed that the mutant can invade when rare if and only if it has smaller random dispersal rate than the resident. When there is a small amount of biased movement or advection, we show that there is a positive random dispersal rate that is both locally evolutionarily stable and convergent stable. Our analysis of the model suggests that a balanced combination of random and biased movement might be a better habitat selection strategy for populations.  相似文献   

20.
 We study the evolution of dispersal in a structured metapopulation model. The metapopulation consists of a large (infinite) number of local populations living in patches of habitable environment. Dispersal between patches is modelled by a disperser pool and individuals in transit between patches are exposed to a risk of mortality. Occasionally, local catastrophes eradicate a local population: all individuals in the affected patch die, yet the patch remains habitable. We prove that, in the absence of catastrophes, the strategy not to migrate is evolutionarily stable. Under a given set of environmental conditions, a metapopulation may be viable and yet selection may favor dispersal rates that drive the metapopulation to extinction. This phenomenon is known as evolutionary suicide. We show that in our model evolutionary suicide can occur for catastrophe rates that increase with decreasing local population size. Evolutionary suicide can also happen for constant catastrophe rates, if local growth within patches shows an Allee effect. We study the evolutionary bifurcation towards evolutionary suicide and show that a discontinuous transition to extinction is a necessary condition for evolutionary suicide to occur. In other words, if population size smoothly approaches zero at a boundary of viability in parameter space, this boundary is evolutionarily repelling and no suicide can occur. Received: 10 November 2000 / Revised version: 13 February 2002 / Published online: 17 July 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号