首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metathoracic dorsal longitudinal muscle (DLM) of the cricket Teleogryllus oceanicus differentiated and developed rapidly over the last nymphal instar. Within eight days, the muscle mass increased by a factor of 15 and the relative volume of mitochondria quadrupled, while the relative amounts of myofibril and sarcoplasmic reticulum decreased. Tracheoblasts began to invade the muscle fibers immediately before the adult molt. Muscle mass continued to increase until four days after the adult molt, but the relative volumes of the ultrastructural components did not change. Within two weeks following the adult molt, the muscles in some of the animals began to degenerate.  相似文献   

2.
The concentration of the juvenile hormone-binding protein (JHB) in hemolymph was determined throughout the last nymphal instar. It was found to be 3.9 μM at the molt to the instar, rising to 13 μM by mid-instar, and dropping to 6.7μM the day before emergence. Endocrine control of its production during the last nymphal instar could not be established. The apparent juvenile hormone esterase (JHF) activity was low at the molt to the last instar, but rose about fivefold by mid-instar, and then modestly declined. On the day of emergence, JHF activity rose to the highest level observed. A four- to fivefold increase in absolute JHF activity was determined during the first half of the last nymphal instar. This increase is not regulated by JH. Removal of the JHB from hemolymph samples by precipitation with a polyclonal specific antibody increased the JHF activity up to 1,000-fold. Thus, changes in the concentrations of JHB can affect the apparent activity of JHE, which is unrelated to the production or degradation of the JHF.  相似文献   

3.
Summary The singing muscles of the katydid Neoconocephalus robustus develop adult ultrastructure late in the last nymphal instar and during the first few days of adult life. The ultrastructural changes during early adulthood were not affected by unilateral axotomy shortly after the adult molt. Both denervated and innervated muscles developed adult proportions of mitochondria, myofibril, and sarcoplasmic reticulum and transverse tubules.  相似文献   

4.
A growth-blocking peptide (GBP) with repressive activity against juvenile hormone (JH) esterase has been isolated from the last (6th) instar larval plasma of the armyworm Pseudaletia separata (Lepidoptera: Noctuidae) parasitized by the parasitoid wasp Apanteles kariyai (Hymenoptera: Braconidae) (1,2). This study demonstrates that GBP not only exists in the plasma of parasitized last instar larvae, but also in the plasma of unparasitized penultimate (5th) instar larvae, while the plasma of last instar larvae does not contain any detectable amount of GBP. The detection of GBP in unparasitized penultimate instar larvae, before the final larval molt, demonstrates that this factor is naturally occurring in the insect larva before the last larval instar and is seemingly coordinating, along with JH, the regulation of juvenile characteristics. This finding suggests the existence of a new type of juvenile peptide hormone in lepidopteran insects.  相似文献   

5.
The egg-larval parasitoid Chelonus sp. induces the precocious onset of metamorphosis in the 4th (penultimate) stadium of its host Trichoplusia ni, emerges from the prepupa, and then feeds on it. Qualitative and quantitative changes in ecdysteroids and juvenile hormone were measured. Hemolymph of 3rd-to 4th-instar host larvae and the parasitoids they contained, as well as nonparasitized and parasitized eggs, were analyzed. In the host hemolymph a broad peak of ecdysteroids during molting into the 4th stadium and a continuous increase from day 2 (onset of precocious wandering) until day 4 (emergence of parasitoid) were observed; 20-hydroxyecdysone and 20,26-dihydroxyecdysone were predominant. The juvenile hormone titer fluctuated in the 3rd and early 4th stadium and fell to undetectable levels shortly before the precocious onset of wandering. The parasitoid's ecdysteroids started to increase on the molt to the 2nd instar (= early 4th instar of the host) and thereafter fluctuated on a high level, 20-hydroxyecdysone, 20,26-dihydroxy-ecdysone, and ecdysone being predominant. The juvenile hormone titer was high in late 1st-instar parasitoids, decreased to low levels at ecdysis into the 2nd instar, and increased again to high levels in the 2nd-instar larvae at the time when their shape changed from flat to cylindrical. After ecdysis to the 3rd instar the juvenile hormone titer fell. A comparison revealed that both ecdysteroids and juvenile hormone fluctuate independently in parasitoid and host at most stages, suggesting that the parasitoid produces its own hormones. The first data on ecdysteroids and juvenile hormones in the egg stage of a parasitoid/host system are reported. At the stage of eye pigmentation parasitized eggs contained more immunoreactive midpolar ecdysteroids than non-parasitized ones. 20-Hydroxyecdysone and 20,26-dihydroxyecdysone were the predominant ecdysteroids in both nonparasitized and parasitized eggs, but the latter contained several additional ecdysteroids which were not seen in nonparasitized eggs. The titer of juvenile hormone was similar in both. Shortly before hatching the ecdysteroids were low in parasitized and nonparasitized eggs, but the content of juvenile hormone was much higher in the former. At this stage the majority of parasitoids have already eclosed and teratocytes are released. The results of HPLC analysis indicated the presence of juvenile hormone III together with juvenile hormones I and II in parasitized eggs, but only juvenile hormones I and II in nonparasitized eggs.  相似文献   

6.
With the exception of the wing imaginal discs, the imaginal discs of Manduca sexta are not formed until early in the final larval instar. An early step in the development of these late-forming imaginal discs from the imaginal primordia appears to be an irreversible commitment to form pupal cuticle at the next molt. Similar to pupal commitment in other tissues at later stages, activation of broad expression is correlated with pupal commitment in the adult eye primordia. Feeding is required during the final larval instar for activation of broad expression in the eye primordia, and dietary sugar is the specific nutritional cue required. Dietary protein is also necessary during this time to initiate the proliferative program and growth of the eye imaginal disc. Although the hemolymph titer of juvenile hormone normally decreases to low levels early in the final larval instar, eye disc development begins even if the juvenile hormone titer is artificially maintained at high levels. Instead, creation of the late-forming imaginal discs in Manduca appears to be controlled by unidentified endocrine factors whose activation is regulated by the nutritional state of the animal.  相似文献   

7.
At 25 degrees C and under a long-day photoperiod, all 5th instar Psacothea hilaris larvae pupate at the next molt. Under a short-day photoperiod, in contrast, they undergo one or two additional larval molts and enter diapause; the 7th instar larvae enter diapause without further molt. The changes in hemolymph juvenile hormone (JH III) titers, JH esterase activity, and ecdysteroid titers in pupation-destined, pre-diapause, and diapause-destined larvae were examined. JH titers of the 5th instar pupation-destined larvae decreased continuously from 1.3 ng/ml and became virtually undetectable on day 13, when JH esterase activity peaked. Ecdysteroids exhibited a small peak on day 8, 1 day before gut purge, and a large peak on day 11, 2 days before the larvae became pre-pupae. The two ecdysteroid peaks are suggested to be associated with pupal commitment and pupation, respectively. JH titers of the 5th instar pre-diapause larvae were maintained at approximately 1.5 ng/ml for 5 days and then increased to form a peak (3.3 ng/ml) on day 11. JH esterase activity remained at a low level throughout. Ecdysteroid levels exhibited a large peak of 40 ng/ml on day 18, coincident with the larval molt to the 6th instar. JH titers of the 7th instar diapause-destined larvae peaked at 1.9 ng/ml on day 3, and a level of approximately 1.1 ng/ml was maintained even 30-60 days into the instar, when they were in diapause. Ecdysteroid titers remained approximately 0.02 ng/ml. Diapause induction in this species was suggested to be a consequence of high JH and low ecdysteroid titers.  相似文献   

8.
The effects of juvenile hormone (JH) and 20-hydroxyecdysone (20E) on the developmental expression of the two insecticyanin genes, ins-a and ins-b, were investigated with two gene-specific probes. Removal of the corpora allata (-CA, source of JH) clearly delayed and down-regulated the epidermal expression of these genes but enhanced their expression in the fat body during the early development of the fifth instar. Application of JH I to the -CA larvae at the time of head capsule slippage completely restored the normal epidermal expression pattern of the two genes in the early fifth instar, then INS-a mRNA declined prematurely whereas INS-b mRNA remained similar to that in the intact larvae. By contrast, in the fat body of -CA larvae, the exogenous JH had little effect on the levels of INS-a mRNA, but enhanced expression of INS-b mRNA relative to intact larvae. Culture of epidermis from day 1 fifth instar larvae with 40 ng/ml 20E for up to 24 h accelerated the loss of INS-a mRNA without affecting the levels of INS-b mRNA. Both mRNAs declined in isolated larval abdomens over a 24 h period, and this decline was slowed by 1 g methoprene (a JH analog). Together these results indicate that JH controls the levels of the two mRNAs in both the epidermis and fat body, with additional factors involved in regulating these genes in the fat body during the molt and in the epidermis during the growth phase.  相似文献   

9.
The morphostatic actions of juvenile hormone   总被引:4,自引:0,他引:4  
The maintenance of "status quo" in larvae by juvenile hormone (JH) involves both the programming of ecdysteroid-dependent synthesis during the molt and the suppression of morphogenetic growth during the intermolt. The latter morphostatic action does not require ecdysteroids, and has been studied in the formation of imaginal discs in Manduca sexta. Preultimate larval instars have both invaginated discs and imaginal primordia, both of which grow isomorphically with the larva. In the last instar, the young discs/primordia initiate the morphogenesis and patterning that results in a mature disc. JH suppresses both the initiation and progression of the signaling that transforms immature discs or primordia into a fully patterned imaginal disc. This transformation normally occurs in the context of the rapid growth of the last larval stage, and nutrient-dependent factors appear to be able to override the JH suppression. The morphostatic action of JH may have been important for the evolution of the larval stage. Studies on embryos of basal, hemimetabolous insects show that their premature exposure to JH can truncate patterning programs and cause precocious tissue maturation, factors essential for organizing a novel larval form. This suppression of embryonic patterning then results in embryonic fields that remain dormant as long as JH is present. These are the primordia that can transform into imaginal discs once JH disappears in preparation for metamorphosis.  相似文献   

10.
In the last larval instar of Lepidoptera, ecdysteroid in the absence of juvenile hormone (JH) is believed to cause the shift from larval to pupal development. In Manduca sexta, tissues such as the Verson's gland and crochet epidermis become pupally committed before the earliest pulse of ecdysteroid that occurs on day 2. What causes the change in commitment in these tissues? First it was necessary to determine at what stage these tissues become competent to express the pupal program. Last instar larvae of different ages were induced to molt prematurely by feeding the ecdysteroid analog RH5992 and Verson's gland proteins were analyzed by SDS-polyacrylamide gel electrophoresis. Glands became competent to make pupal proteins between 24 and 32 h after the last larval ecdysis. Next, hormonal regulation of competence was examined in ligated abdomens of 12h last instar larvae. Treatment with JH II acid or methoprene acid plus a low dose (1/50th of the molt inducing dose) of RH5992 induced competence, whereas RH5992 alone, methoprene acid alone or methoprene plus RH5992 did not. Verson's glands maintained in vitro produced pupal proteins in response to methoprene acid together with RH5992 but not with RH5992 alone. Likewise, crochet epidermis lost the ability to make crochets (metamorphic change) only in isolated abdomens treated with JH II acid or methoprene acid and low doses of RH5992. In conclusion, JH acid in the presence of basal levels of ecdysteroid induces tissue competence for metamorphosis. Metamorphic competence is followed by commitment, induced by a small pulse of ecdysteroid in the absence of JH, and finally by expression caused by a high titer of ecdysteroid. It is proposed that JH acid is an essential metamorphic hormone.  相似文献   

11.
Severance of nervi corporis allati I (NCA I) in day-1 adult female Locusta migratoria resulted in a significant decrease and a loss of the characteristic pattern of juvenile hormone biosynthesis by the corpora allata as determined by radiochemical assay. This decrease in the rate of juvenile hormone biosynthesis was not reflected in basal oöcyte growth. The lengths of the oöcytes were the same in NCA-transectioned and in the sham-operated females. The effect of severance of both NCA I and NCA II on juvenile hormone biosynthesis and ovarian maturation was similar to the effect of NCA I severance only.Rate of juvenile hormone biosynthesis by corpora allata of fourth-instar larvae exhibited a maximum of activity in the middle of the stadium. The severance of NCA I early in the stadium resulted in a very low rate of juvenile hormone biosynthesis and a disappearance of this peak. In NCA I-transectioned larvae, the duration of the stadium was significantly increased although larvae moulted into normal fifth instar.  相似文献   

12.
When final (5th) instar larvae of Precis coenia were treated with the juvenile hormone analog (JHA) methoprene, they underwent a supernumerary larval molt, except for certain regions of their imaginal disks, which deposited a normal pupal cuticle. Evidently those regions had already become irreversibly committed to pupal development at the time JHA was applied. By applying JHA at successively later times in the instar, the progression of pupal commitment could be studied. Pupal commitment in the proboscis, antenna, eye, leg and wing imaginal disks occurred in disk-specific patterns. In each imaginal disk there were distinct initiation sites where pupal commitment began during the first few hours of the final larval instar, and from which commitment spread across the remainder of the disk over a 2- to 3-day period. The initiation sites were not always located in homologous regions of the various disks. As a rule, pupal commitment also spread from imaginal disk tissue to surrounding epidermal tissue. The regions of pupal commitment in all disks except those of the wings, coincided with the regions of growth of the disk. Only portions of the disk that had undergone cell division and growth underwent pupal commitment. Shortening the growth period did not prevent pupal commitment in the wing imaginal disk, indicating that, in this disk at least, a normal number of cell divisions was not crucial in reprogramming of disk cells for pupal cuticle synthesis. The apparent growth spurt of imaginal disks that occurs during the last part of the final larval instar is merely the final stage of normal and constant exponential growth. Juvenile hormone (JH) and ecdysteroids appeared to play little role in the regulation of normal imaginal disk growth. Instead, growth of the disks may be under intrinsic control. Interestingly, even though endogenous fluctuation in JH titers do not affect imaginal disk growth, exogenous JHA proved able to inhibit both pupal commitment, cell movement, and growth of the disks during the last larval instar. This function of JH could be important under certain adverse conditions, such as when metamorphosis is delayed in favor of a supernumerary larval molt.  相似文献   

13.
Juvenile hormone esterase (JHE) is the primary juvenile hormone (JH) metabolic enzyme in insects and plays important roles in the regulation of molt and metamorphosis. We investigated its mRNA expression profiles and hormonal control in Bombyx mori larvae. JHE mRNA was expressed at the end of the 4th and 5th (last) larval instars in the midgut and in all the three (anterior, middle, posterior) parts of the silk gland. In the fat body, JHE expression peaked twice in the 5th instar, at wandering and before pupation, while it gradually decreased through the 4th instar. When 20-hydroxyecdysone (20E) was injected into mid-5th instar larvae, JHE mRNA expression was induced in the anterior silk gland but suppressed in the fat body. Topical application of a juvenile hormone analog fenoxycarb to early-5th instar larvae induced JHE expression in both tissues. In the anterior silk gland, JHE expression was accelerated and strengthened by 20E plus fenoxycarb treatments compared with 20E or fenoxycarb single treatment, indicating positive interaction of 20E and JH. JHE mRNA is thus expressed in tissue-specific manners under the control of ecdysteroids and JH.  相似文献   

14.
The timing of pupal commitment of the forewing imaginal discs of the silkworm, Bombyx mori, was determined by a transplantation assay using fourth instar larvae. The wing discs were not pupally committed at the time of ecdysis to the fifth instar. Pupal commitment began shortly after the ecdysis and was completed in 14 h. When the discs of newly molted larvae (0-h discs) were cultured in medium containing no hormone, they were pupally committed in 26 h. In vitro exposure of 0-h discs to 20-hydroxyecdysone accelerated the progression of pupal commitment. Methoprene, a juvenile hormone analog (JHA), did not suppress the change in commitment in vitro at physiological concentrations. Thus the wing discs at the time of the molt have lost their sensitivity to JH, and 20E is not a prerequisite for completion of pupal commitment. These results suggest that the change in commitment in the forewing discs may begin before the last larval molt.  相似文献   

15.
Dipetalogaster maximus and Triatoma infestans are hematophagous insects, vectors of Chagas' disease. After the last molt of their metamorphosis, from fifth instar nymph to adult, they acquire wings and the ability to fly, which is important for their dispersal. Some biochemical changes accompanying this last stage have been studied by determining activity of hexokinase (EC 2.7.1.1), fructose-6-phosphate kinase (EC 2.7.1.11), glucose-6-phosphate dehydrogenase (EC 1.1.1.49), glutamate dehydrogenase (EC 1.4.1.4), aspartate aminotransferase (EC 2.6.1.1), malate dehydrogenase (EC 1.1.1.37) and glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) in thoracic muscle extracts of fifth instar nymphs and adults. Activity of all the enzymes, expressed in U per mg protein, was significantly higher in muscles of adults than of nymphs, except that of aspartate aminotransferase, had lower activity in adults of T. infestans. The increase of glycerol-3-phosphate dehydrogenase activity was particularly striking (30-fold), while the increase in glucose-6-phosphate dehydrogenase activity was of a lesser magnitude than those observed for other enzymes. Comparative ultrastructural studies of thoracic muscles showed that in adult preparations mitochondria were more numerous and larger in size, and presented more cristae than in muscles of fifth instar nymphs. The biochemical changes detected appear to be the expression of the adaptation of adult muscles for flight activity. Thus, adult muscles would have higher glycolytic and respiratory capacity than those of fifth instar nymphs. The operation of systems transferring hydrogen into mitochondria, especially that of the glycerophosphate shuttle, may be greatly increased in adult muscles.  相似文献   

16.
The sizes of the unifunctional dorsal longitudinal (DLM) and bifunctional subalar (SA) metathoracic flight muscles of the cricket Teleogryllus oceanicus increase by more than an order of magnitude between the second instar before the terminal molt and the tenth day of adult life. During the same developmental period isometric twitch duration (onset to 50% relaxation, 25 degrees C) varies little, while muscle mitochondrial content increased by a factor of ten as measured by stereological analysis of electron micrographs and citrate synthase activity (mumoles citrate . min-1 . gm protein-1, 25 degrees C). The wing muscles of adults have abundant sarcoplasmic reticulum (SR), narrow myofibrils, and a high volume density of mitochondria. At two molts from adulthood muscles that will later be used in flight behavior also have narrow myofibrils and abundant SR, but unlike muscles at later stages, nymphal muscles have a low volume density of mitochondria. At the terminal molt muscles have at least as much SR as is seen in muscles at the tenth day of adult life, and the myofibrils are also more narrow at the earlier stage. Since there is significant variation in muscle structure and little change in twitch duration during late development, the efficacy of the SR in releasing and resequestering CA2+ is seemingly lower in muscles at the terminal molt, a time of rapid muscle growth.  相似文献   

17.
The presence of juvenile hormone in the haemolymph of larvae of Locusta has been detected by a modified Galleria bioassay and these results are compared with indirect methods of estimating corpus allatum activity. Juvenile hormone is present in the haemolymph during the fourth larval instar except on the last day of the instar, and is absent from the haemolymph of the fifth and final larval instar except on the last day of the instar. Changes in the volumes of the corpora allata simply reflect changes in the growth of the whole insect and are of no value in predicting endocrine activity. Changes in the size of the cells of the corpora allata can be correlated with the presence of juvenile hormone in the haemolymph in the fourth larval instar, but similar changes in cell size occur in the fifth larval instar when no juvenile hormone is present in the haemolymph. The effects of the implantation of corpora allata are unreliable as estimates of corpus allatum activity as isolated corpora allata from fifth instar larvae release juvenile hormone. Indirect methods of measuring corpus allatum activity are thus shown to be unreliable. The Rf value of Locusta juvenile hormone as determined by thin-layer chromatography differs from that of Roeller's juvenile hormone, suggesting that the two hormones might be chemically distinct.  相似文献   

18.
19.
Weight and time of moult during the last instar of the cabbage looper (Trichoplusia ni) were examined and used to select last instar larvae that had similar rates of development. Haemolymph protein content and titres of haemolymph esterases hydrolyzing juvenile hormone I, juvenile hormone III, and α-naphthyl acetate were monitored during the last instar using these closely timed larvae. Juvenile hormone I and juvenile hormone III esterase profiles were very similar and differed markedly from the α-naphthyl acetate esterase and protein content profiles. Two major peaks of juvenile hormone esterase activity were observed, one before ecdysone release and the other just prior to pupal ecdysis. Juvenile hormone I was hydrolyzed 15 times faster than juvenile hormone III when assayed at 5 × 10?6 M.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号