首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work aims at characterizing the regulatory mechanisms of metabolism and product formation of BHK cells producing a recombinant antibody/cytokine fusion protein. This work was carried out through the achievement of several steady-states in chemostat cultures, corresponding to different glucose and glutamine levels in the feed culture medium. Results obtained indicate that both glucose and glutamine consumptions show a Michaelis-Menten dependence on residual glucose and glutamine concentrations, respectively. Similar dependence was also observed for lactate and ammonia productions. K(Glc)(Glc) and K(Gln)(Gln) were estimated to be 0.4 and 0.15 mM, respectively, while q(max)(Glc) and q(max)(Gln) were estimated to be 1.8 and 0.55 nmol 10(-6)cells min(-1), respectively. At very low glucose concentrations, the glucose-to-lactate yield decreased markedly showing a metabolic shift towards lower lactate production; also, the glucose-to-cells yield was increased. At very low-glutamine concentrations, the glutamine-to-ammonia and glutamine-to-cells yields increased, showing a more efficient glutamine metabolism. Overall, amino acid consumption was increased under low glucose or glutamine concentrations. Metabolic-flux analysis confirmed the metabolic shifts by showing increases in the fluxes of the more energetically efficient pathways, at low-nutrient concentrations. No effect of glucose or glutamine concentrations on the cell-specific productivity was observed, even under metabolically shifted metabolism; therefore, it is possible to confine the cells to a more efficient metabolic state maintaining the productivity of the recombinant product of interest, and consequently, increasing final product titers by increasing cell concentration and culture length. This work is intended to be a model approach to characterize cell metabolism in an integrated way; it is highly valuable for the establishment of operating strategies in mammalian cell fermentations in which cell metabolism is to be confined to a desired state.  相似文献   

2.
Saccharomyces cerevisiae was grown in a continuous culture at a single dilution rate with input ammonia concentrations whose effects ranged from nitrogen limitation to nitrogen excess and glucose limitation. The rate of ammonia assimilation (in millimoles per gram of cells per hour) was approximately constant. Increased extracellular ammonia concentrations are correlated with increased intracellular glutamate and glutamine concentrations, increases in levels of NAD-dependent glutamate dehydrogenase activity and its mRNA (gene GDH2), and decreases in levels of NADPH-dependent glutamate dehydrogenase activity and its mRNA (gene GDH1), as well as decreases in the levels of mRNA for the amino acid permease-encoding genes GAP1 and PUT4. The governing factor of nitrogen metabolism might be the concentration of ammonia rather than its flux.  相似文献   

3.
This is the first study to examine PER.C6 cell glucose/energy and glutamine metabolism with fed-batch cultures at controlled low glutamine, low glucose, and simultaneous low glucose and low glutamine levels. PER.C6(TM) cell metabolism was investigated in serum-free suspension bioreactors at two-liter scale. Control of glucose and/or glutamine concentrations had a significant effect on cellular metabolism leading to an increased efficiency of nutrient utilization, altered byproduct synthesis, while having no effect on cell growth rate. Cultivating cells at a controlled glutamine concentration of 0.25 mM reduced q(Gln) and q(NH(4)(+)) by approximately 30%, q(Ala) 85%, and q(NEAA) 50%. The fed-batch control of glutamine also reduced the overall accumulation of ammonium ion by approximately 50% by minimizing the spontaneous chemical degradation of glutamine. No major impact upon glucose/energy metabolism was observed. Cultivating cells at a glucose concentration of 0.5 mM reduced q(Glc) about 50% and eliminated lactate accumulation. Cells exhibited a fully oxidative metabolism with Y(O(2)/Glc) of approximately 6 mol/mol. However, despite no increase in q(Gln), an increased ammonium ion accumulation and Y(NH(4)(+)/Gln) were also observed. Effective control of lactate and ammonium ion accumulation by PER.C6 cells was achieved using fed-batch with simultaneously controlled glucose and glutamine. A fully oxidative glucose metabolism and a complete elimination of lactate production were obtained. The q(Gln) value was again reduced and, despite an increased q(NH(4)(+)) compared with batch culture, ammonium ion levels were typically lower than corresponding ones in batch cultures, and the accumulation of non-essential amino acids (NEAA) was reduced about 50%. In conclusion, this study shows that PER.C6 cell metabolism can be confined to a state with improved efficiencies of nutrient utilization by cultivating cells in fed-batch at millimolar controlled levels of glucose and glutamine. In addition, PER.C6 cells fall into a minority category of mammalian cell lines for which glutamine plays a minor role in energy metabolism.  相似文献   

4.
The synthesis of human superoxide dismutase (SOD) in batch cultures of a Saccharomyces cerevisiae strain using a glucose-limited minimal medium was studied through metabolic flux analysis. A stoichiometric model was built, which included 78 reactions, according to metabolic pathways operative in these strains during respirofermentative and oxidative metabolism. It allowed calculation of the distribution of metabolic fluxes during diauxic growth on glucose and ethanol. Fermentation profiles and metabolic fluxes were analyzed at different phases of diauxic growth for the recombinant strain (P+) and for its wild type (P-). The synthesis of SOD by the strain P+ resulted in a decrease in specific growth rate of 34 and 54% (growth on glucose and ethanol respectively) in comparison to the wild type. Both strains exhibited similar flux of glucose consumption and ethanol synthesis but important differences in carbon distribution with biomass/substrate yields and ATP production 50% higher in P-. A higher contribution of fermentative metabolism, with 64% of the energy produced at the phosphorylation level, was observed during SOD production. The flux of precursors to amino acids and nucleotides was higher in the recombinant strain, in agreement with the higher total RNA and protein levels. Lower specific growth rates in strain P+ appear to be related to the decrease in the rate of synthesis of nonrecombinant protein, as well as a decrease in the activities of the pentose phosphate (PP) pathway and TCA cycle. A very different way of entry into the stationary phase was observed for each strain: in the wild-type strain most metabolic fluxes decreased and fluxes related to energy reserve synthesis increased, while in the P+ strain the flux of 22 reactions (including PP pathway and amino acids biosynthesis) related to SOD production increased their fluxes. Changes in SOD production rates at different physiological states appear to be related to the differences in building blocks availability between respirofermentative and oxidative metabolism. Using the present expression system, ideal conditions for SOD synthesis are represented by either active growth during respirofermentative metabolism or transition from a growing to a nongrowing state. An increase in SOD flux could be achieved using an expression system nonassociated to growth and potentially eliminating part of the metabolic burden.  相似文献   

5.
Glutamate dehydrogenase (GDH) and glutamine synthetase (GS)-glutamine 2-oxoglutarate-aminotransferase (GOGAT) represent the two main pathways of ammonium assimilation in Corynebacterium glutamicum. In this study, the ammonium assimilating fluxes in vivo in the wild-type ATCC 13032 strain and its GDH mutant were quantitated in continuous cultures. To do this, the incorporation of 15N label from [15N]ammonium in glutamate and glutamine was monitored with a time resolution of about 10 min with in vivo 15N nuclear magnetic resonance (NMR) used in combination with a recently developed high-cell-density membrane-cyclone NMR bioreactor system. The data were used to tune a standard differential equation model of ammonium assimilation that comprised ammonia transmembrane diffusion, GDH, GS, GOGAT, and glutamine amidotransferases, as well as the anabolic incorporation of glutamate and glutamine into biomass. The results provided a detailed picture of the fluxes involved in ammonium assimilation in the two different C. glutamicum strains in vivo. In both strains, transmembrane equilibration of 100 mM [15N]ammonium took less than 2 min. In the wild type, an unexpectedly high fraction of 28% of the NH4+ was assimilated via the GS reaction in glutamine, while 72% were assimilated by the reversible GDH reaction via glutamate. GOGAT was inactive. The analysis identified glutamine as an important nitrogen donor in amidotransferase reactions. The experimentally determined amount of 28% of nitrogen assimilated via glutamine is close to a theoretical 21% calculated from the high peptidoglycan content of C. glutamicum. In the GDH mutant, glutamate was exclusively synthesized over the GS/GOGAT pathway. Its level was threefold reduced compared to the wild type.  相似文献   

6.
A number of factors have been shown to affect the metabolism of glucose and glutamine in mammalian cells and their mechanisms have been partially elucidated. Despite these efforts, a quantitative knowledge of the significance of these factors, the regulation of glucose and glutamine utilization, and particularly the interactions of these two nutrients is still lacking. Controversies exist in the literature. To clarify some of these controversies, mathematical models are proposed in this work which enable to separate and identify the effects of individual factors. Experimental data from five cell lines obtained in batch, fed-batch, and continuous cultures, both under steady-state and transient conditions, were used to verify the model formulations. The resulting kinetic models successfully describe all these cultures. According to the models, the specific consumption rate of glucose (Q(Glc)) of continuous animal cells under normal culture conditions can be expressed as a sum of three parts: a part owing to cell growth; a part owing to glucose excess; and a part owing to glutamine regulation. The specific consumption rate of glutamine (q(Glc)7) can be expressed as a sum of only two parts: a part owing to cell growth; and a part owing to glutamine excess. Using the kinetic models the interaction and regulation of glucose and glutamine utilizations are quantitatively analyzed. The results indicate that, whereas q(Glc) is affected by glutamine, q(Gln) appears to be not or less significantly affected by glucose. It is also shown that the relative utilizations of glucose and glutamine by anabolism and catabolism are mainly affected by the residual concentrations of the respective compounds and are less sensitive to growth rate and the nature of growth limitation.(c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
The metabolism of proline was studied in liver cells isolated from starved rats. The following observations were made. 1. Consumption of proline could be largely accounted for by production of glucose, urea, glutamate and glutamine. 2. At least 50% of the total consumption of oxygen was used for proline catabolism. 3. Ureogenesis and gluconeogenesis from proline could be stimulated by partial uncoupling of oxidative phosphorylation. 4. Addition of ethanol had little effect on either proline uptake or oxygen consumption, but strongly inhibited the production of both urea and glucose and caused further accumulation of glutamate and lactate. Accumulation of glutamine was not affected by ethanol. 5. The effects of ethanol could be overcome by partial uncoupling of oxidative phosphorylation. 6. The apparent Km values of argininosuccinate synthetase (EC 6.3.4.5) for aspartate and citrulline in the intact hepatocyte are higher than those reported for the isolated enzyme. 7. 3-Mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase (EC 4.1.1.32), greatly enhanced cytosolic aspartate accumulation during proline metabolism, but inhibited urea synthesis. 8. It is concluded that when proline is provided as a source of nitrogen to liver cells, production of ammonia by oxidative deamination of glutamate is inhibited by the highly reduced state of the nicotinamide nucleotides within the mitochondria. 9. Conversion of proline into glucose and urea is a net-energy-yielding process, and the high state of reduction of the nicotinamide nucleotides is presumably maintained by a high phosphorylation potential. Thus when proline is present as sole substrate, the further oxidation of glutamate by glutamate dehydrogenase (EC 1.4.1.3) is limited by the rate of energy expenditure of the cell.  相似文献   

8.
9.
重组CHO细胞培养过程中氨对细胞代谢的影响   总被引:6,自引:2,他引:4  
研究了重组CHO细胞批培养过程中,氨浓度对细胞的葡萄糖、谷氨酰胺及其它氨基酸代谢的影响。表明,细胞对葡萄糖和谷氨酰胺的得率系数随着氨浓度的增加而降低,起始氨浓度为566mmol/L的批培养过程与起始氨浓度为021mmol/L的批培养过程相比,细胞对葡萄糖和谷氨酰胺的得率系数分别下降了78%和74%,细胞对其它氨基酸的得率系数也分别下降了50%~70%。氨浓度的增加明显地改变了细胞的代谢途径,葡萄糖代谢更倾向于厌氧的乳酸生成。在谷氨酰胺的代谢过程中,谷氨酸经谷氨酸脱氢酶进一步生成α酮戊二酸的过程受到了氨的抑制,而氨对谷氨酸经谷氨酸转氨酶反应生成α酮戊二酸的过程有促进作用,但总体上谷氨酸进一步脱氨生成α酮戊二酸的反应受到了氨的限制。  相似文献   

10.
1. The pathways and the fate of glutamate carbon and nitrogen were investigated in isolated guinea-pig kidney-cortex tubules. 2. At low glutamate concentration (1 mM), the glutamate carbon skeleton was either completely oxidized or converted into glutamine. At high glutamate concentration (5 mM), glucose, lactate and alanine were additional products of glutamate metabolism. 3. At neither concentration of glutamate was there accumulation of ammonia. 4. Nitrogen-balance calculations and the release of 14CO2 from L-[1-14C]glutamate (which gives an estimation of the flux of glutamate carbon skeleton through alpha-oxoglutarate dehydrogenase) clearly indicated that, despite the absence of ammonia accumulation, glutamate metabolism was initiated by the action of glutamate dehydrogenase and not by transamination reactions as suggested by Klahr, Schoolwerth & Bourgoignie [(1972) Am. J. Physiol. 222, 813-820] and Preuss [(1972) Am. J. Physiol. 222, 1395-1397]. Additional evidence for this was obtained by the use of (i) amino-oxyacetate, an inhibitor of transaminases, which did not decrease glutamate removal, or (ii) L-methionine DL-sulphoximine, an inhibitor of glutamine synthetase, which caused an accumulation of ammonia from glutamate. 5. Addition of NH4Cl plus glutamate caused an increase in both glutamate removal and glutamine synthesis, demonstrating that the supply of ammonia via glutamate dehydrogenase is the rate-limiting step in glutamine formation from glutamate. NH4Cl also inhibited the flux of glutamate through glutamate dehydrogenase and the formation of glucose, alanine and lactate. 6. The activities of enzymes possibly involved in the glutamate conversion into pyruvate were measured in guinea-pig renal cortex. 7. Renal arteriovenous-difference measurements revealed that in vivo the guinea-pig kidney adds glutamine and alanine to the circulating blood.  相似文献   

11.
The aim of the present work was to study the effect of ammonia and lactate on growth, metabolism, and productivity of BHK cells producing a recombinant fusion protein. Results show that cell growth was reduced with the increase in ammonia or lactate: k(1/2) of 1.1 mM and 3.5 mM for stirred and stationary cultures, respectively, for ammonia and of 28 mM for both stationary and stirred cultures for lactate, were obtained. The cell-specific consumption rates of both glucose (q(Glc)) and glutamine (q(Gln)) increased, whereas that of oxygen (q(O2)) decreased, with the increase in ammonia or lactate concentrations. The cell-specific production rates of lactate (q(Lac)) increased with an increase in ammonia concentration; similarly for the cell-specific production rates of ammonia (q(Amm)), which also increased with an increase in lactate concentration; on the other hand, both q(Lac) and q(Amm) markedly decreased when lactate or ammonia concentrations were increased, respectively; lactate was consumed at lactate concentrations above 30 mM and ammonia was consumed at ammonia concentrations above 5 mM. In vivo (31)P NMR experiments showed that ammonia and lactate affect the intracellular pH, leading to intracellular acidification, and decrease the content in phosphomonoesters, whereas the cell energy state was maintained. The effect of lactate on cell growth and q(Gln) is partially due to osmolarity, on q(Glc) and q(Amm) is entirely due to osmolarity, but on q(Lac) is mainly due to lactate effect per se. An increase in ammonia from 0 to 20 mM induced a 50% reduction in specific productivity, whereas an increase in lactate from 0 to 60 mM induced a 40% decrease.  相似文献   

12.
Corynebacterium callunae (NCIB 10338) grows faster on glutamate than ammonia when used as sole nitrogen sources. The levels of glutamine synthetase (GS; EC 6.3.1.2) and glutamate synthase (GOGAT; EC 1.4.1.13) of C. callunae were found to be influenced by the nitrogen source. Accordingly, the levels of GS and GOGAT activities were decreased markedly under conditions of ammonia excess and increased under low nitrogen conditions. In contrast, glutamate dehydrogenase (GDH; EC 1.4.1.4) activities were not significantly affected by the type or the concentration of the nitrogen source supplied. The carbon source in the growth medium could also affect GDH, GS and GOGAT levels. Of the carbon sources tested in the presence of 2 mM or 10 mM ammonium chloride as the nitrogen source pyruvate, acetate, fumarate and malate caused a decrease in the levels of all three enzymes as compared with glucose. GDH, GS and GOGAT levels were slightly influenced by aeration. Also, the enzyme levels varied with the growth phase. Methionine sulfoximine, an analogue of glutamine, markedly inhibited both the growth of C. callunae cells and the transferase activity of GS. The apparent K m values of GDH for ammonia and glutamate were 17.2 mM and 69.1 mM, respectively. In the NADPH-dependent reaction of GOGAT, the apparent K m values were 0.1 mM for -ketoglutarate and 0.22 mM for glutamine.Abbreviations GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase  相似文献   

13.
Changes in hepatopancreas, muscle and gill tissue nitrogen metabolic profiles were studied in a penaeid prawn, Penaeus indicus, following its exposure to sublethal concentrations of methylparathion, carbaryl and aldrin. In all the insecticide exposed prawn tissues, Ammonia levels were significantly increased and a shift in the nitrogen metabolism towards the synthesis of urea and glutamine was observed. Inhibition of glutamate oxidation to ammonia and alpha-ketoglutarate by glutamate dehydrogenase suggests a mechanism whereby hyperammonemia is reduced by minimizing the addition of further ammonia to the already existing elevated ammonia pool. Increased alanine and aspartate aminotransferases demonstrates the onset of gluconeogenesis. Mechanisms to detoxify the ammonia by enhancing the synthesis of urea and glutamine at the cellular level was observed in the selected tissues pave way for the survivability of prawns in insecticide polluted environs.  相似文献   

14.
Introduction of the Lactobacillus casei lactate dehydrogenase (LDH) gene into Saccharomyces cerevisiae under the control of the TPI1 promoter yielded high LDH levels in batch and chemostat cultures. LDH expression did not affect the dilution rate above which respiro-fermentative metabolism occurred (Dc) in aerobic, glucose-limited chemostats. Above Dc, the LDH-expressing strain produced both ethanol and lactate, but its overall fermentation rate was the same as in wild-type cultures. Exposure of respiring, LDH-expressing cultures to glucose excess triggered simultaneous ethanol and lactate production. However, the specific glucose consumption rate was not affected, indicating that NADH reoxidation does not control glycolytic flux under these conditions.  相似文献   

15.
In the rumen bacteria, ammonia as the end product of nitrogen is incorporated into carbon skeleton (α-ketoglutarate) to yield glutamine and glutamate which are important nitrogen donors in nitrogenous compounds metabolism in cells. The enzymes glutamine synthetase, glutamate synthetase, and glutamate dehydrogenase are involved in these processes. Some experimental results have proven that the global nitrogen regulation system may participate in the regulation of assimilation of ammonia in rumen bacteria. This review offers a current perspective on the pathways and key enzymes of ammonia assimilation in rumen bacteria with the possible molecular regulation strategy, while points out the further research direction.  相似文献   

16.
Glutamine metabolism in lymphocytes of the rat.   总被引:24,自引:7,他引:17       下载免费PDF全文
The metabolism of glutamine in resting and concanavalin-A-stimulated lymphocytes was investigated. In incubated lymphocytes isolated from rat mesenteric lymph nodes, the rates of oxygen and glutamine utilization and that of aspartate production were approximately linear with respect to time for 60 min, and the concentrations of adenine nucleotides plus the ATP/ADP or ATP/AMP concentration ratios remained approximately constant for 90 min. The major end products of glutamine metabolism were glutamate, aspartate and ammonia: the carbon from glutamine may contribute about 30% to respiration. When both glucose and glutamine were presented to the cells, the rates of utilization of both substances increased. Evidence was obtained that the stimulation of glycolysis by glutamine could be due, in part, to an activation of 6-phosphofructokinase. Starvation of the donor animal increased the rate of glutamine utilization. The phosphoenolpyruvate carboxykinase inhibitor mercaptopicolinate decreased the rate of glutamine utilization by 28%; the rates of accumulation of glutamate and ammonia were decreased, whereas those of lactate, aspartate and malate were increased. The mitogen concanavalin A increased the rate of glutamine utilization (by about 51%). The rate of [3H]thymidine incorporation into DNA caused by concanavalin A in cultured lymphocytes was very low in the absence of glutamine; it was increased about 4-fold at 1 microM-glutamine and was maximal at 0.3 mM-glutamine; neither other amino acids nor ammonia could replace glutamine.  相似文献   

17.
 The liver plays a central role in nitrogen metabolism. Nitrogen enters the liver as free ammonia and as amino acids of which glutamine and alanine are the most important precursors. Detoxification of ammonia to urea involves deamination and transamination. By applying quantitative in situ hybridization, we found that mRNA levels of the enzymes involved are mainly expressed in periportal zones of liver lobules. Free ammonia, that is not converted periportally, is efficiently detoxified in the small rim of hepatocytes around the central veins by glutamine synthetase preventing it from entering the systemic circulation. Detoxification of ammonia by glutamine synthetase may be limited due to a shortage of glutamate when the nitrogen load is high. Adaptations in metabolism that prevent release of toxic ammonia from the liver were studied in rats that were fed diets with different amounts of protein, thereby varying the nitrogen load of the liver. We observed that mRNA levels of periportal deaminating and transaminating enzymes increased with the protein content in the diet. Similarly, mRNA levels of pericentral glutamate dehydrogenase and ornithine aminotransferase, the main producers of glutamate in this zone, and pericentral glutamine synthetase all increased with increasing protein levels in the diet. On the basis of these changes in mRNA levels, we conclude that: (a) glutamate is produced pericentrally in sufficient amounts to allow ammonia detoxification by glutamine synthetase and (b) in addition to the catalytic role of ornithine in the periportally localized ornithine cycle, pericentral ornithine degradation provides glutamate for ammonia detoxification. Accepted: 16 March 1999  相似文献   

18.
Urease and glutamine synthetase activities in Selenomonas ruminantium strain D were highest in cells grown in ammonia-limited, linear-growth cultures or when certain compounds other than ammonia served as the nitrogen source and limited the growth rate in batch cultures. Glutamate dehydrogenase activity was highest during glucose (energy)-limited growth or when ammonia was not growth limiting. A positive correlation (R = 0.96) between glutamine synthetase and urease activities was observed for a variety of growth conditions, and both enzyme activities were simultaneously repressed when excess ammonia was added to ammonia-limited, linear-growth cultures. The glutamate analog methionine sulfoximine (MSX), inhibited glutamine synthetase activity in vitro, but glutamate dehydrogenase, glutamate synthase, and urease activities were not affected. The addition of MSX (0.1 to 100 mM) to cultures growing with 20 mM ammonia resulted in growth rate inhibition that was dependent upon the concentration of MSX and was overcome by glutamine addition. Urease activity in MSX-inhibited cultures was increased significantly, suggesting that ammonia was not the direct repressor of urease activity. In ammonia-limited, linear-growth cultures, MSX addition resulted in growth inhibition, a decrease in GS activity, and an increase in urease activity. These results are discussed with respect to the importance of glutamine synthetase and glutamate dehydrogenase for ammonia assimilation under different growth conditions and the relationship of these enzymes to urease.  相似文献   

19.
Experiments were carried out on rats to evaluate the possible regulatory roles of renal glutaminase activity, mitochondrial permeability to glutamine, phosphoenolpyruvate carboxykinase activity and systemic acid–base changes in the control of renal ammonia (NH3 plus NH4+) production. Acidosis was induced by drinking NH4Cl solution ad libitum. A pronounced metabolic acidosis without respiratory compensation [pH=7.25; HCO3=16.9mequiv./litre; pCO2=40.7mmHg (5.41kPa)] was evident for the first 2 days, but thereafter acid–base status returned towards normal. This improvement in acid–base status was accompanied by the attainment of maximal rates of ammonia excretion (onset phase) after about 2 days. A steady rate of ammonia excretion was then maintained (plateau phase) until the rats were supplied with tap water in place of the NH4Cl solution, whereupon pCO2 and HCO3 became elevated [55.4mmHg (7.37kPa) and 35.5mequiv./litre] and renal ammonia excretion returned to control values within 1 day (recovery phase). Renal arteriovenous differences for glutamine always paralleled rates of ammonia excretion. Phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase activities and the rate of glutamine metabolism (NH3 production and O2 consumption) by isolated kidney mitochondria all increased during the onset phase. The increases in glutaminase and in mitochondrial metabolism continued into the plateau phase, whereas the increase in the carboxykinase reached a plateau at the same time as did ammonia excretion. During the recovery phase a rapid decrease in carboxykinase activity accompanied the decrease in ammonia excretion, whereas glutaminase and mitochondrial glutamine metabolism in vitro remained elevated. The metabolism of glutamine by kidney-cortex slices (ammonia, glutamate and glucose production) paralleled the metabolism of glutamine in vivo during recovery, i.e. it returned to control values. The results indicate that the adaptations in mitochondrial glutamine metabolism must be regulated by extra-mitochondrial factors, since glutamine metabolism in vivo and in slices returns to control values during recovery, whereas the mitochondrial metabolism of glutamine remains elevated.  相似文献   

20.
The metabolism of [U-(13)C]lactate (1 mM) in the presence of unlabeled glucose (2.5 mM) was investigated in glutamatergic cerebellar granule cells, cerebellar astrocytes, and corresponding co-cultures. It was evident that lactate is primarily a neuronal substrate and that lactate produced glycolytically from glucose in astrocytes serves as a substrate in neurons. Alanine was highly enriched with (13)C in the neurons, whereas this was not the case in the astrocytes. Moreover, the cellular content and the amount of alanine released into the medium were higher in neurons than astrocytes. On incubation of the different cell types in medium containing alanine (1 mM), the astrocytes exhibited the highest level of accumulation. Altogether, these results indicate a preferential synthesis and release of alanine in glutamatergic neurons and uptake in cerebellar astrocytes. A new functional role of alanine may be suggested as a carrier of nitrogen from glutamatergic neurons to astrocytes, a transport that may operate to provide ammonia for glutamine synthesis in astrocytes and dispose of ammonia generated by the glutaminase reaction in glutamatergic neurons. Hence, a model of a glutamate-glutamine/lactate-alanine shuttle is presented. To elucidate if this hypothesis is compatible with the pattern of alanine metabolism observed in the astrocytes and neurons from cerebellum, the cells were incubated in a medium containing [(15)N]alanine (1 mM) and [5-(15)N]glutamine (0.5 mM), respectively. Additionally, neurons were incubated with [U-(13)C]glutamine to estimate the magnitude of glutamine conversion to glutamate. Alanine was labeled from [5-(15)N]glutamine to 3.3% and [U-(13)C]glutamate generated from [U-(13)C]glutamine was labeled to 16%. In spite of the modest labeling in alanine, it is clear that nitrogen from ammonia is transferred to alanine via transamination with glutamate formed by reductive amination of alpha-ketoglutarate. With regard to the astrocytic part of the shuttle, glutamine was labeled to 22% in one nitrogen atom whereas 3.2% was labeled in two when astrocytes were incubated in [(15)N]alanine. Moreover, in co-cultures, [U-(13)C]alanine labeled glutamate and glutamine equally, whereas [U-(13)C]lactate preferentially labeled glutamate. Altogether, these results support the role proposed above of alanine as a possible ammonia nitrogen carrier between glutamatergic neurons and surrounding astrocytes and they show that lactate is preferentially metabolized in neurons and alanine in astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号