首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although intact fruits of unripe cantaloupe (Cucumis melo L.) produce very little ethylene, a massive increase in ethylene production occurred in response to excision. The evidence indicates that this wound ethylene is produced from methionine via 1-aminocyclopropanecarboxylic acid (ACC) as in ripening fruits. Excision induced an increase in both ACC synthase and the enzyme converting ACC to ethylene. Ethylene further increased the activity of the enzyme system converting ACC to ethylene. The induction by ethylene required a minimum exposure of 1 hour; longer exposure had increasingly larger effect. The response was saturated at approximately 3 microliters per liter ethylene and was inhibited by Ag+. Neither ethylene nor ACC had a promotive or inhibitory effect on ACC synthase beyond the effect attributable to wounding.  相似文献   

2.
Microbial metabolism of ethylene   总被引:1,自引:0,他引:1  
The ethylene-oxidizing strain E20 was grown on different carbon sources to obtain information on the metabolism of ethylene from simultaneous adaptation studies and from measurements of specific activities of enzymes in cell-free extracts.From the simultaneous adaptation studies it was concluded that ethylene oxide is a product of ethylene catabolism. The bacterium was also able to grow on the epoxide. From a comparison of the specific activities of isocitrate lyase and malate synthetase in different extracts it was concluded that the glyoxylate cycle was involved in the metabolism of ethylene, indicating that acetyl-CoA is a metabolite of ethylene catabolism. The sequence of reactions leading from ethylene oxide to acetyl-CoA could not be established from the simultaneous adaptation experiments and the enzyme activities in extracts.Support for the research has come in part from grants of the N.V. Nederlandse Gasunie and the VEG Gasinstituut.  相似文献   

3.
Riov J  Yang SF 《Plant physiology》1982,70(1):136-141
Exogenous ethylene stimulated ethylene production in intact citrus (Citrus sinensis L. Osbeck cv. “Washington Navel”) leaves and leaf discs following a 24-hour exposure. Studies with leaf discs showed that ethylene production decreased when ethylene was removed by aeration. The extent of stimulation was dependent upon the concentration of exogenous ethylene (1-10 microliters per liter). Silver ion blocked the autocatalytic effect of ethylene at concentrations of 0.5 millimolar and lower, but increased ethylene production at higher concentrations. The stimulating effect of ethylene resulted from the enhancement of both 1-aminocyclopropane-1-carboxylic acid (ACC) formation and the conversion of ACC to ethylene. Whereas autocatalysis was evident following 24 hours incubation, autoinhibition of wound- and mannitol-induced ethylene production was observed during the first 24-hour incubation. Ethylene treatment during this period resulted in a marked decrease in ACC levels and ethylene production rates. Furthermore, in leaf discs treated for 24 hours with ethylene, ethylene production rates increased greatly during the first 2 hours after removal of exogenous ethylene by aeration. This increase was eliminated if the discs were transferred to propylene instead of air, indicating that the autocatalytic effect of ethylene is counteracted by its autoinhibitory effect. It is suggested that autocatalysis involves increased synthesis of ACC synthase and the enzyme responsible for the conversion of ACC to ethylene, whereas autoinhibition involves suppression of the activity of these two enzymes.  相似文献   

4.
孙芝兰  陈以峰 《生物工程学报》2013,29(10):1431-1440
乙烯是世界上需求最大的化工原料,随着石油资源的日益枯竭和原油价格的不断攀升,生物乙烯迎来了重大发展机遇。文中主要比较两条生物乙烯合成途径——生物乙醇脱水制备乙烯途径 (即间接途径) 和生物乙烯的直接合成途径,重点论述了直接合成途径和途径中关键酶的性质、利用微生物直接合成生物乙烯的基因工程策略、工程化制造生物乙烯的前景及成功事例,并指出直接合成生物乙烯替代石化乙烯具有较大的市场潜力。  相似文献   

5.
Ethylene is a gaseous plant hormone used in many physiological studies examining its role in plant growth and development. However, ethylene gas may not be conveniently available to many laboratories for occasional use, and therefore several chemicals can be used as replacements. Here we report that the kinetics of the ethylene response induced by ethylene and two widely-used ethylene replacements are different. ACC failed to efficiently replace prolonged ethylene treatments, while the decomposition products of ethephon may cause non-specific responses and the efficiency of ethephon conversion to ethylene was relatively low. A cost-effective method to prepare ethylene gas was developed. Analyzed by gas chromatography, the chemically produced ethylene exhibited an identical chromatogram to that from the commercial source. Our synthetic ethylene gave the same dose-response curve in Arabidopsis as gaseous ethylene. Our study shows that the use of the ethylene gas is essential to experiments that are sensitive to treatment duration and dosage. When ACC and ethephon are used as replacements, caution should be taken in the experimental design. For laboratories that do not have an ethylene tank, ethylene gas can be easily prepared by a chemical approach without further purification.  相似文献   

6.
The plant hormone ethylene is involved in many plant processes ranging from seed germination to leaf and flower senescence and fruit ripening. Ethylene is synthesized from methionine, via S-adenosyl-L-methionine (SAM) and 1-amino-cyclopropane-1-carboxylic acid (ACC). The key ethylene biosynthetic enzymes are ACC synthase (ACS) and ACC oxidase (ACO). Manipulation of ethylene biosynthesis by chemicals and gene technology is discussed. Biotechnological modification of ethylene synthesis is a promising method to prevent spoilage of agricultural and horticultural products.  相似文献   

7.
The influence of ethylene and ethylene modulators on the in vitro organogenesis of tomato was studied using a highly regenerating accession of the wild tomato Solanum pennellii and an F1 plant resulting from a cross between Solanum pennellii and Solanum lycopersicum cv. Anl27, which is known to have a low regeneration frequency. Four ethylene-modulating compounds, each at four levels, were used, namely: cobalt chloride (CoCl2), which inhibits the production of ethylene; AgNO3 (SN), which inhibits ethylene action; and Ethephon and the precursor 1-aminocyclopropane-1-carboxylic acid (ACC), which both promote ethylene synthesis. Leaf explants of each genotype were incubated on shoot induction medium supplemented with each of these compounds at 0, 10 or 15 days following bud induction. The results obtained in our assays indicate that ethylene has a significant influence on tomato organogenesis. Concentrations of ethylene lower than the optimum (according to genotype) at the beginning of the culture may decrease the percentage of explants with buds (B), produce a delay in their appearance, or indeed inhibit bud formation. This was observed in S. pennellii and the F1 explants cultured on media with SN (5.8–58.0 μM) as well as in the F1 explants cultured on medium with 21.0 μM CoCl2. The percentage of explants with shoots (R) and the mean number of shoots per explant with shoots (PR) also diminished in media that contained SN. Shoots isolated from these explants were less developed compared to those isolated from control explants. On the other hand, ethylene supplementation may contribute to enhancing shoot development. The number of isolable shoots from S. pennellii explants doubled in media with ACC (9.8–98.0 μM). Shoots isolated from explants treated with ethylene releasing compounds showed a higher number of nodes when ACC and Ethephon were added at 10 days (in F1 explants) or at 15 days (in S. pennellii) after the beginning of culture. Thus, the importance of studying not only the concentration but also the timing of the application of regulators when developing regeneration protocols has been made manifest. An excess of ethylene supplementation may produce an inhibitory effect, as was observed when using Ethephon (17.2–69.0 μM). These results show the involvement of ethylene in tomato organogenesis and lead us to believe that ethylene supplementation may contribute to enhancing regeneration and shoot development in tomato.  相似文献   

8.
Five hours after cut carnations had been treated with a pulse of 1 or 4 mM silver thiosulfate (STS), in vivo ethylene binding in petals was inhibited by 22 and 29%, respectively. When binding was measured 4 days after the 4-mM STS treatment, binding was inhibited by 81%. 2,5-Norbornadiene, which substantially delays carnation senescence, inhibited ethylene binding by 41% at a concentration of 1000 l/l. The Kd for ethylene binding in carnations was estimated to be 0.1 l/l in petals and 0.09 l/l in leaves. The concentration of binding sites was estimated to be 6.0×10–9 mol/kg of petals and 2.0×10–9 mol/kg of leaves  相似文献   

9.
The similarity of stress ethylene biosynthesis in whole plants to endogenous ethylene biosynthesis was investigated using two inhibitors of ethylene biosynthesis, aminoethoxyvinylglycine (AVG) and cobalt chloride (Co2+); and the intermediates, methionine, S -adenosylmethionine (SAM), and 1-aminocyclopropane-1-carboxylic acid (ACC), of basal ethylene biosynthesis. Stress ethylene production induced by ozone, cadmium, or 2,4-dichlorophenoxyacetic acid was inhibited in hydroponically-grown soybean seedlings in a concentration-dependent manner by both AVG and CO2+. The ethylene intermediates evoked responses in intact seedlings similar to that described for endogenous ethylene production in isolated vegetative tissue. The addition of SAM to the hydroponic system relieved AVG inhibition of stress ethylene production. Feeding ACC to the seedlings resulted in increased ethylene production independent of stress application or prior AVG inhibition. Cobalt inhibition of stress ethylene production was relieved by increasing concentrations of ACC. A short lag period of 12–18 min was observed in stress ethylene production following a 30-min ozone exposure. Addition of cycloheximide partially inhibited ozone-induced ethylene production.
These results suggest a common pathway in whole plants for stress ethylene production and endogenous ethylene biosynthesis.  相似文献   

10.
Cellulysin-induced ethylene production in tobacco (Nicotiana tabacum L.) leaf discs was enhanced several-fold by prior exposure of the leaf tissue to ethylene. This enhancement in the response of the tissue to Cellulysin increased rapidly during 4 and 8 hours of pretreatment with ethylene and resulted from greater conversion of methionine to ethylene. On treatment with Cellulysin, the content of 1-aminocyclopropane-1-carboxylic acid (ACC) in leaf discs not pretreated with ethylene markedly increased while that of the ethylene-pretreated tissue was only slightly higher than in the tissue incubated in the absence of Cellulysin. Ethylene-treated tissue, however, converted ACC to ethylene at a faster rate than air controls. These data indicate that ethylene stimulates Cellulysin-induced ethylene production by stimulating the conversion of ACC to ethylene. Data are also presented on a possible relation of this phenomenon to ethylene produced by the tobacco leaf upon interaction with its pathogen, Alternaria alternata.  相似文献   

11.
Ethylene concentrations in the soil atmosphere can greatly exceed levels known to markedly influence plant growth. The ethylene is microbial in origin and the rate of production under anaerobic conditions is correlated with organic matter content. Under field conditions the highest concentrations occur when soil temperatures and moisture levels are high, resulting in development of anaerobic zones. Crop species differ widely in the sensitivity of their roots to ethylene, this sensitivity being broadly correlated with known intolerance of waterlogged (anaerobic) environments.  相似文献   

12.
13.
Precursors of ethylene   总被引:9,自引:6,他引:3       下载免费PDF全文
Baur AH  Yang SF 《Plant physiology》1969,44(9):1347-1349
  相似文献   

14.
Reagent-grade ethylene glycol has been shown to contain substantial amounts of aldehydes, peroxides, iron, and uv-absorbing hydrocarbons. These impurities can be removed by reduction with sodium borohydride, dilution with H2O, passing through a train of four columns, and filtering through a 0.45-micron filter. The product is stable for at least several months and perhaps much longer; storage under nitrogen in acid-washed dark bottles is preferable. Ten liters of 25% (v/v) aqueous ethylene glycol can easily be purified in about 1 week using equipment commonly available in a biochemical laboratory. This purification is also applicable to aqueous glycerol.  相似文献   

15.
Auxin stimulation of ethylene evolution   总被引:18,自引:14,他引:4       下载免费PDF全文
Abeles FB 《Plant physiology》1966,41(4):585-588
The stimulation of ethylene production from seedling tissue of Phascolus vulgaris, Helianthus annuus and Zea mays by growth regulators was inhibited by actinomycin D and puromycin and to a lesser extent by 2-thiouracil and p-fluorophenylalanine. It is concluded that the mechanism of action of growth regulators on the enhancement of ethylene production is the formation of enzymes involved in ethylene biogenesis.  相似文献   

16.
The gaseous plant hormone ethylene is perceived by a family of five ethylene receptor members in the dicotyledonous model plant Arabidopsis. Genetic and biochemical studies suggest that the ethylene response is suppressed by ethylene receptor complexes, but the biochemical nature of the receptor signal is unknown. Without appropriate biochemical measures to trace the ethylene receptor signal and quantify the signal strength, the biological significance of the modulation of ethylene responses by multiple ethylene receptors has yet to be fully addressed. Nevertheless, the ethylene receptor signal strength can be reflected by degrees in alteration of various ethylene response phenotypes and in expression levels of ethylene-inducible genes. This mini-review highlights studies that have advanced our understanding of cooperative ethylene receptor signaling.  相似文献   

17.
18.
低乙烯减压处理对柿果实乙烯生物合成的影响   总被引:5,自引:1,他引:4  
在 1 0℃± 1℃的条件下 ,研究了低乙烯减压处理对火柿采后乙烯生物合成的影响。结果表明 ,低乙烯减压处理使火柿 ACC含量降低 ,EFE活性减弱 ,从而显著抑制了乙烯的产生 ,延迟了乙烯峰出现的时间。该处理能显著延缓火柿硬度的下降。  相似文献   

19.
The polyamines putrescine, cadaverine, spermidine and spermine reduced the amount of ethylene produced by senescing petals of Tradescantia but they did not prevent anthocyanin leakage from these same petals. These polyamines also inhibited auxin-mediated ethylene production by etiolated soybean hypocotyls to less than 7 % of the control. The basic amino acids lysine and histidine reduced the amount of auxin-induced ethylene produced by soybean hypocotyls by ca 50 %. In the hypocotyls, methionine was unable to overcome the inhibition caused by the polyamines. The polyamines spermidine and spermine inhibited ethylene production induced by the application of 1-aminocyclopropane-1-carboxylic acid and they also reduced the endogenous content of this amino acid in the treated tissues.  相似文献   

20.
The heat-stable cofactor in cauliflower florets, which has been shown to be necessary for the enzymic production of ethylene from methional, consists of two components. The first is of a phenolic nature and appears to be an ester of p-coumaric acid. The second component is acidic in character, but has not as yet been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号