首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enantioselective liquid–liquid extraction of zopiclone was conducted by employing a series of (R)‐mandelic acid esters as chiral extractants. The effects of concentration of extractant, concentration of zopiclone, type of organic solvent, pH value, and temperature on the extraction efficiency were investigated. (R)‐o‐chloromandelic acid propyl ester was demonstrated to be an efficient chiral extractant for zopiclone resolution with a maximum enantioselectivity of 1.6. Chirality 25:952–956, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Chiral ionic liquids (CILs) with amino acids as cations have been applied as novel chiral ligands coordinated with Cu2+ to separate tryptophan enantiomers in ligand exchange chromatography. Four kinds of amino acid ionic liquids, including [L‐Pro][CF3COO], [L‐Pro][NO3], [L‐Pro]2[SO4], and [L‐Phe][CF3COO] were successfully synthesized and used for separation of tryptophan enantiomers. To optimize the separation conditions, [L‐Pro][CF3COO] was selected as the model ligand. Some factors influencing the efficiency of chiral separation, such as copper ion concentration, CILs concentration, methanol ratio (methanol/H2O, v/v), and pH, were investigated. The obtained optimal separation conditions were as follows: 8.0 mmol/L Cu(OAc)2, 4.0 mmol/L [L‐Pro][CF3COO] ,and 20% (v/v) methanol at pH 3.6. Under the optimum conditions, acceptable enantioseparation of tryptophan enantiomers could be observed with a resolution of 1.89. The results demonstrate the good applicability of CILs with amino acids as cations for chiral separation. Furthermore, a comparative study was also conducted for exploring the mechanism of the CILs as new ligands in ligand exchange chromatography. Chirality 26:160–165, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
A novel method for chiral separation of flurbiprofen enantiomers was developed using aqueous two‐phase extraction (ATPE) coupled with biphasic recognition chiral extraction (BRCE). An aqueous two‐phase system (ATPS) was used as an extracting solvent which was composed of ethanol (35.0% w/w) and ammonium sulfate (18.0% w/w). The chiral selectors in ATPS for BRCE consideration were L‐dioctyl tartrate and L‐tryptophan, which were screened from amino acids, β‐cyclodextrin derivatives, and L‐tartrate esters. Factors such as the amounts of L‐dioctyl tartrate and L‐tryptophan, pH, flurbiprofen concentration, and the operation temperature were investigated in terms of chiral separation of flurbiprofen enantiomers. The optimum conditions were as follows: L‐dioctyl tartrate, 80 mg; L‐tryptophan, 40 mg; pH, 4.0; flurbiprofen concentration, 0.10 mmol/L; and temperature, 25 °C. The maximum separation factor α for flurbiprofen enantiomers could reach 2.34. The mechanism of chiral separation of flurbiprofen enantiomers is discussed and studied. The results showed that synergistic extraction has been established by L‐dioctyl tartrate and L‐tryptophan, which enantioselectively recognized R‐ and S‐enantiomers in top and bottom phases, respectively. Compared to conventional liquid–liquid extraction, ATPE coupled with BRCE possessed higher separation efficiency and enantioselectivity without the use of any other organic solvents. The proposed method is a potential and powerful alternative to conventional extraction for separation of various enantiomers. Chirality 27:650–657, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
The synthesis of Spi(τ‐dec), derived from the selective alkylation of L‐spinacine (4,5,6,7‐tetrahydro‐1H‐imidazo[4,5‐c]pyridine‐6‐carboxylic acid) at the τ‐nitrogen of its heteroaromatic ring, with a linear hydrocarbon chain of 10 carbon atoms, is described here for the first time. Spi(τ‐dec) was successfully employed in the past to prepare home‐made chiral columns for chiral ligand‐exchange high‐performance liquid chromatography. In the present article a new method is described, using Spi(τ‐dec) as a chiral selector in high‐performance thin‐layer chromatography (HPTLC): commercial hydrophobic plates were first coated with Spi(τ‐dec) and then treated with copper sulfate. The performance of this new chiral stationary phase was tested against racemic mixtures of aromatic amino acids, after appropriate optimization of both the conditions of preparation of the plates and the mobile phase composition. The enantioselectivity values obtained for the studied compounds were higher than those reported in the literature for similar systems. The method employed here for the preparation of chiral HPTLC plates proved practical, efficient, and inexpensive. Chirality 26:313–318, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
A rapid and effective RP‐UHPLC‐DAD method for enantioseparation of three flavanones, i.e., flavanone, naringenin, and hesperetin, was developed and validated. Chromatographic separation of the analytes was performed using a Chiralpak AD‐3R analytical column under reverse phase conditions with methanol as the mobile phase. The method was validated in the concentration range of 0.2 to 50 µg/mL for enantiomers of flavanone and 0.5 to 50 µg/mL for enantiomers of naringenin and hesperetin. The limits of quantification were between 0.03 to 0.5 µg/mL. Intraday and interday precision were below 14% and accuracy varied from 0.04 to 8.17%. Chirality 28:147–152, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
The parallel kinetic resolution of racemic 2‐aryl‐2‐deuterio‐propionic and butanoic acids using an equimolar combination of quasi‐enantiomeric oxazolidin‐2‐ones is discussed. The levels of diastereoselectivity were high leading to enantiomerically pure D ‐labeled products in good yield. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
BINAP‐metal complexes were prepared as extractant for enantioselective liquid–liquid extraction (ELLE) of amino‐(4‐nitro‐phenyl)‐acetic acid (NPA) enantiomers. The influence of process variables, including types of organic solvents and metal precursor, concentration of ligand, pH, and temperature on the efficiency of the extraction, were investigated experimentally. An interfacial reaction model was established for insightful understanding of the chiral extraction process. Important parameters required for the model were determined. The experimental data were compared with model predictions to verify the model prediction, It was found that the interfacial reaction model predicted the experimental results accurately. By modeling and experiment, an optimal extraction condition with pH of 7 and host (extractant) concentration of 1 mmol/L was obtained and high enantioselectivity (αop) of 3.86 and performance factor (pf) of 0.1949 were achieved. Chirality 26:79–87, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
The separation of enantiomers of 16 basic drugs was studied using polysaccharide‐based chiral selectors and acetonitrile as mobile phase with emphasis on the role of basic and acidic additives on the separation and elution order of enantiomers. Out of the studied chiral selectors, amylose phenylcarbamate‐based ones more often showed a chiral recognition ability compared to cellulose phenylcarbamate derivatives. An interesting effect was observed with formic acid as additive on enantiomer resolution and enantiomer elution order for some basic drugs. Thus, for instance, the enantioseparation of several β‐blockers (atenolol, sotalol, toliprolol) improved not only by the addition of a more conventional basic additive to the mobile phase, but also by the addition of an acidic additive. Moreover, an opposite elution order of enantiomers was observed depending on the nature of the additive (basic or acidic) in the mobile phase. Chirality 27:228–234, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
The residual enantiomers of three tris‐(3‐indolyl)‐phosphane oxides bearing different alkyl groups (methyl, ethyl or i‐propyl) in position 2 of the indole rings constituting the blades were separated on the immobilized type Chiralpak IC column in polar organic and reversed‐phase modes. The good enantioselectivity and versatility of the IC CSP allowed easy isolation of the enantiomerically highly enriched samples suitable for configurational stability studies. The enantiomerization barriers of residual phosphane oxides were evaluated both by off‐column techniques (CD signal and enantiomeric purity decay kinetics) and by dynamic enantioselective high‐performance liquid chromatography (HPLC). Chirality 27:888–899, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
The chiral fungicide furametpyr is widely used in the rice field to control rice sheath blight; however, furametpyr enantiomers are treated as just one compound in traditional achiral analysis, which gives only partial information. An effective chiral analytical method was developed for the resolution and determination of the fungicide furametpyr enantiomers in rice, soil, and water samples. Furametpyr enantiomers were excellently separated and determined on a Chiralpak AD‐H column with n‐hexane/ethanol (90:10, v/v) as mobile phase at a flow rate of 0.8 mL min‐1 with UV detection at 220 nm. The resolution was up to 8.85. The first eluted enantiomer was (+)‐furametpyr and the second eluted one was (?)‐furametpyr. The effects of mobile‐phase composition and column temperature on the enantioseparation were evaluated. The method was validated for linearity, repeatability, accuracy, limit of detection (LOD), and limit of quantification LOQ. LOD was 2.0 µg kg‐1 in water, 0.02 mg kg‐1 in soil, and 0.07 mg kg‐1 in rice with an LOQ of 6.7 µg kg‐1 in water, 0.07 mg kg‐1 in soil, and 0.23 mg kg‐1 in rice. The average recoveries of the pesticide in all matrices ranged from 73.1 to 101.8% for all fortification levels. The precision values associated with the analytical method, expressed as relative standard deviation (RSD) values, were below 14.0% in all matrices. The methodology was successfully applied for the enantioselective analysis of furametpyr enantiomers in real samples. Chirality 25:904–909, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The enantiomeric separation of eight pesticides including bitertanol ( 1 ), diclobutrazol ( 2 ), fenbuconazole ( 3 ), triticonazole ( 4 ), imazalil ( 5 ), triapenthenol ( 6 ), ancymidol ( 7 ), and carfentrazone‐ethyl ( 8 ) was achieved, using normal‐phase high‐performance liquid chromatography on two cellulosed‐based chiral columns. The effects of isopropanol composition from 2% to 30% in the mobile phase and column temperature from 5 to 40 °C were investigated. Satisfactory resolutions were obtained for bitertanol ( 1 ), triticonazole ( 4 ), imazalil ( 5 ) with the (+)‐enantiomer eluted first and fenbuconazole ( 3 ) with the (—)‐enantiomer eluted first on Lux Cellulose‐2 and Lux Cellulose‐3. (+)‐Enantiomers of diclobutrazol ( 2 ) and triapenthenol ( 6 ) were first eluted on Lux Cellulose‐2. (—)‐Carfentrazone‐ethyl ( 8 ) were eluted first on Lux Cellulose‐2 and Lux Cellulose‐3 with incomplete separation. Reversed elution orders were obtained for ancymidol (7). (+)‐Ancymidol was first eluted on Lux Cellulose‐2 while on Lux Cellulose‐3 (—)‐ancymidol was first eluted. The results of the elution order at different column temperatures suggested that column temperature did not affect the optical signals of the enantiomers. These results will be helpful to prepare and analyze individual enantiomers of chiral pesticides. Chirality 27:32–38, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
The enantiomers of mandelic acid and its analogs have been chromatographically separated on a chiral stationary phase (CSP) derived from 4‐(3,5‐dinitrobenzamido) tetrahydrophenanthrene. The rationale of separations of these compounds is discussed with respect to the method development for determining enantiomeric purity and possibility of obtaining enantiomerically pure materials by high‐pressure liquid chromatography. The relationship of analyte structure to the extent of enantiomeric separation has been examined and separation factors (α) are presented for various groups of structurally related compounds. Chiral recognition models have been suggested to account for the observed separations. These models provide mechanistic insights into the chiral recognition process. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
A chiral ligand‐exchange high‐performance liquid chromatography method was developed for the enantioseparation of ofloxacin and its six related substances termed impurities A, B, C, D, E, and F. The separation was performed on a conventional C18 column. Different organic modifiers, copper salts, amino acids, the ratio of Cu2+ to amino acid, pH of aqueous phase, and column temperature were optimized. The optimal mobile phase conditions were methanol‐water systems consisting of 5 mmol/L copper sulfate and 10 mmol/L L‐isoleucine (L‐Ile). Under such conditions, good enantioseparation of ofloxacin and impurities A, C, E, and F could be observed with resolutions (RS) of 3.54, 1.97, 3.21, 3.50, and 2.12, respectively. On the relationship between the thermodynamic parameters and structures of analytes, the mechanism of chiral recognition was investigated. It was concluded that ofloxacin and impurities A, C, E, and F were all enthalpically driven enantioseparation and that low column temperature was beneficial to enantioseparation. Furthermore, the structure–separation relationship of these analytes is also discussed. Chirality 27:843–849, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
Enantioseparation through liquid extraction technology is an emerging field, e.g., enantioseparations of amino acids (and derivatives thereof), amino alcohols, amines, and carboxylic acids have been reported. Often, when a new selector is developed, the versatility of substrate scope is investigated. From an industrial point of view, the problem is typically approached the other way around, and for a target racemate, a selector needs to be found in order to accomplish the desired enantioseparation. This study presents such a screening approach for the separation of the enantiomers of dl ‐α‐methyl phenylglycine amide (dl ‐α‐MPGA), a model amide racemate with high industrial relevance. Chiral selectors that were reported for other classes of racemates were investigated, i.e., several macrocyclic selectors and Pd‐BINAP complexes. It appeared very challenging to obtain both high extraction yields and good enantioselectivity for most selectors, but Pd‐BINAP‐based selectors performed well, with enantioselectivities up to 7.4 with an extraction yield of the desired enantiomer of 95.8%. These high enantioselectivities were obtained using dichloromethane as solvent. Using less volatile chlorobenzene or 1‐chloropentane, reasonable selectivities of up to 1.7 were measured, making these the best alternative solvents for dichloromethane. Chirality 27:123–130, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
A practical synthetic method for 2,2'‐disubstituted fluorinated binaphthyl derivatives was achieved using magnesium bis(2,2,6,6‐tetramethylpiperamide) [Mg(TMP)2], prepared from LiTMP (2 equiv) and MgBr2 (1 equiv), which allows for access to a variety of fluorinated binaphthyl compounds. The utility of the fluorinated binaphthyl backbone was evaluated in F10BINOL derived chiral mono‐phosphoric acid (R)‐ 19 as the chiral Brønsted acid catalyst. The catalyst (R)‐ 19 performs exceptionally well in the catalytic enantioselective imino‐ene reaction, demonstrating the potential of a fluorinated binaphthyl framework. Chirality 27:464–475, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
A sensitive and enantioselective vancomycin chiral stationary phase high‐performance liquid chromatography–tandem mass spectrometry method was developed for the determination of trantinterol enantiomers in human plasma. Baseline resolution was achieved using the vancomycin chiral stationary phase known as Chirobiotic V with polar ionic mobile phase consisting of acetonitrile–methanol (60:40, v/v) containing 0.01% ammonia and 0.02% acetic acid at a flow rate of 1.0 mL/min. Waters Oasis HLB C18 solid phase extraction cartridges were used in the sample preparation of trantinterol samples from plasma. The detection was performed on a triple‐quadrupole tandem mass spectrometer by multiple reaction monitoring mode via electrospray ionization. The calibration curve was linear in a concentration range from 0.0606 to 30.3 ng/mL in plasma, with the lower limit of quantification of 0.0606 ng/mL. The intra‐ and interday precision (relative standard deviation) values were within 9.7% and the accuracy (relative error) was from ?6.6 to 7.2% at all quality control levels. The method was successfully applied to a study of stereoselective pharmacokinetics in human. Chirality 27:327–331, 2015.© 2015 Wiley Periodicals, Inc.  相似文献   

17.
The absolute configuration of three 4‐aryl‐3,4‐dihydro‐2(1H)‐pyrimidones (Biginelli compounds, DHPMs) was established by comparison of the typical circular dichroism (CD) spectra of individual enantiomers with reference samples of known absolute configuration. The enantiomers were obtained by semipreparative separation of racemic mixtures on a Chiralcel OD‐H chiral stationary phase. The method was used to establish the enantiopreference of various lipases in biocatalytic kinetic resolution experiments employing activated DHPM esters. Chirality 11:659–662, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

18.
The enantioselective photolysis of a cold gas‐phase noncovalent complex of tryptophan with alkali‐metalized L‐serine, M+(L‐Ser)(Trp) (M = Na and Li), was examined using a tandem mass spectrometer containing a variable‐temperature ion trap. CO2 loss from Trp in the clusters was enantiomerically selective in ultraviolet excitation with linearly polarized light. M+(L‐Ser) promoted the enantioselective photolysis of Trp as a chiral auxiliary. The enantioselective photolysis of the D‐enantiomer was applied to a quantitative chiral analysis, in which the optical purity of tryptophan could be determined by measuring the relative abundance ratio R of the enantioselective CO2 loss to the chiral‐independent evaporation of L‐Ser in a single photodissociation mass spectrum of M+(L‐Ser)(Trp). Chirality 27:349–352, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
Four groups of organophosphonate derivatives enantiomers were separated on N‐(3,5‐dinitrobenzoyl)‐S‐leucine chiral stationary phase. The three‐dimensional structures of the complexes between the single enantiotopic chiral compounds and chiral stationary phase have been studied using molecular model and molecular dynamics simulation. Detailed results regarding the conformation, auto‐docking, and thermodynamic estimation are presented. The elution order of the enantiomer could be determined from the energy. The predicted chiral discrimination was obtained by computational results. Chirality 25:101–106, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Chiral O,N,O‐tridentate phenol ligands bearing a camphor backbone were found to be effective chiral catalysts for the enantioselective addition of diethylzinc to aromatic aldehydes, resulting in high enantioselectivities (80–95% ee) at room temperature. Chirality 28:65–71, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号