首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A novel phenylacetylene monomer having a perfluorinated alkyl group ( M-F ) was synthesized and polymerized in a chiral catalytic system to yield a one‐handed helical polymer. The ability and efficiency of the chiral induction of the fluorine‐containing monomer in the helix‐sense‐selective polymerization (HSSP) was much higher than those of a monomer having the corresponding alkyl group ( M-H ) we reported before. The resulting polymer P-F showed cis‐cisoidal one‐handed helical conformation, and was suitable for highly selective photocyclic aromatization (SCAT) to give a 2D surface modifier ( T-F ). Oxygen permselectivity through a base polymer membrane was highly enhanced from 1.83 to 2.36 by adding a small amount (1–5 wt%) of the 2D surface modifier T-F . The improvement was thought to be caused by improvement of solution selectivity on the membrane surface which the 2D surface modifier effectively covered. Chirality 27:459–463, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
The synthesis of two fluorescent coumarin‐type chiral derivatization agents ( 4 and 11 ) is reported. A chiral side chain was introduced at position 7 of the coumarin via Mitsunobu reaction. The two coumarins bear in this side chain either a free amino group or a carboxyl group, making them useful for further transformations. Conjugates of chiral prototype drugs with 4 or 11 were prepared by amide coupling of the analyte's carboxyl group to the reagent's amine group, or vice versa. The separation of seven diastereomeric conjugates through achiral high‐performance liquid chromatography (HPLC) on a common C18 column is demonstrated. Chirality 25:957–964, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Polybissilsesquioxanes with single‐handed helical morphologies attracted much attention during the last decade, which could be applied as asymmetric catalysts and chiral stationary phases. Herein, a pair of chiral biphenylene‐bridged bissilsesquioxanes were synthesized. They self‐assembled into helical bundles in ethanol, behavior that was confirmed in field emission scanning electron microscopy images. Circular dichroism analysis indicated that the biphenylene groups twisted in a single‐handed fashion. Single‐handed helical polybissilsesquioxane bundles were prepared via polycondensation of the bissilsesquioxanes, using a self‐templating approach. Because of the shrinkage that occurred during polycondensation, the helical pitches of the bundles were shorter than those of their corresponding organic self‐assemblies. The wide‐angle X‐ray diffraction pattern indicated that there were no π–π interactions among the diphenylene groups. The circular dichroism spectra indicated that the chirality was successfully transferred from the bissilsesquioxane self‐assemblies to the polybissilsesquioxane. The polybissilsesquioxanes displayed a capacity for the adsorption of nitrobenzene and had potential application for enantioseparation. Chirality 28:44–48, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
A protocol is presented for an efficient and practical approach to the synthesis of enantiomerically pure bicyclo[3.3.0]octane derivatives from achiral Cs‐symmetric bicyclo[3.3.0]octane‐2,8‐dione using a diastereomeric resolution‐selective deprotection method. This method affords chiral building blocks having bicyclo[3.3.0]octane framework with the same site of diastereotopic carbonyl functional group. Chirality 27:364–369, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
In this article, we review the relevant results obtained during almost 60 years of research on a specific aspect of stereochemistry, namely handedness preference and switches between right‐handed and left‐handed helical peptide structures generated by protein amino acids or appropriately designed, side‐chain modified analogs. In particular, we present and discuss here experimental and theoretical data on three categories of those screw‐sense issues: (i) right‐handed/left‐handed α‐helix transitions underwent by peptides rich in Asp, specific Asp β‐esters, and Asn; (ii) comparison of the preferred conformations adopted by helical host–guest peptide series, each characterized by an amino acid residue (e.g. Ile or its diastereomer aIle) endowed with two chiral centers in its chemical structure; and (iii) right‐handed (type I)/left‐handed (type II) poly‐(Pro)n helix transitions monitored for peptides rich in Pro itself or its analogs with a pyrrolidine ring substitution, particularly at the biologically important position 4. The unique modular and chiral properties of peptides, combined with their relatively easy synthesis, the chance to shape them into the desired conformation, and the enormous chemical diversity of their coded and non‐coded α‐amino acid building blocks, offer a huge opportunity to structural chemists for applications to bioscience and nanoscience problems. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
A single chiral cyclic α,α‐disubstituted amino acid, (3S,4S)‐1‐amino‐(3,4‐dimethoxy)cyclopentanecarboxylic acid [(S,S)‐Ac5cdOM], was placed at the N‐terminal or C‐terminal positions of achiral α‐aminoisobutyric acid (Aib) peptide segments. The IR and 1H NMR spectra indicated that the dominant conformations of two peptides Cbz‐[(S,S)‐Ac5cdOM]‐(Aib)4‐OEt ( 1) and Cbz‐(Aib)4‐[(S,S)‐Ac5cdOM]‐OMe (2) in solution were helical structures. X‐ray crystallographic analysis of 1 and 2 revealed that a left‐handed (M) 310‐helical structure was present in 1 and that a right‐handed (P) 310‐helical structure was present in 2 in their crystalline states. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
One chiral L ‐valine (L ‐Val) was inserted into the C‐terminal position of achiral peptide segments constructed from α‐aminoisobutyric acid (Aib) and α,β‐dehydrophenylalanine (ΔZPhe) residues. The IR, 1H NMR and CD spectra indicated that the dominant conformations of the pentapeptide Boc‐Aib‐ΔPhe‐(Aib)2‐L ‐Val‐NH‐Bn (3) and the hexapeptide Boc‐Aib‐ΔPhe‐(Aib)3‐L ‐Val‐NH‐Bn (4) in solution were both right‐handed (P) 310‐helical structures. X‐ray crystallographic analyses of 3 and 4 revealed that only a right‐handed (P) 310‐helical structure was present in their crystalline states. The conformation of 4 was also studied by molecular‐mechanics calculations. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
《Chirality》2017,29(3-4):120-129
Novel poly(biphenylylacetylene) derivatives bearing two acetyloxy groups at the 2‐ and 2′‐positions and an alkoxycarbonyl group at the 4′‐position of the biphenyl pendants (poly‐ Ac 's) were synthesized by the polymerization of the corresponding biphenylylacetylenes using a rhodium catalyst. The obtained stereoregular (cis transoidal ) poly‐ Ac 's folded into a predominantly one‐handed helical conformation accompanied by a preferred‐handed axially twisted conformation of the biphenyl pendants through noncovalent interactions with a chiral alcohol and both the induced main‐chain helicity and the pendant axial chirality were maintained, that is, memorized, after complete removal of the chiral alcohol. The stability of the helicity memory of the poly‐ Ac 's in a solution was lower than that of the analogous poly(biphenylylacetylene)s bearing two methoxymethoxy groups at the 2‐ and 2′‐positions of the biphenyl pendants (poly‐ MOM 's). In the solid state, however, the helicity memory of the poly‐ Ac 's was much more stable and showed a better chiral recognition ability toward several racemates than that of the previously reported poly‐ MOM when used as a chiral stationary phase for high‐performance liquid chromatography. In particular, the poly‐ Ac ‐based CSP with a helicity memory efficiently separated racemic benzoin derivatives into enantiomers.  相似文献   

9.
Four poly(phenylacetylene)s ( PPA-1 , PPA-2 , PPA-3 , PPA-4 ) bearing phenylcarbamate residues of L ‐phenylglycinol and amide linkage as pendants were prepared to be used as chiral stationary phases (CSPs) for high‐performance liquid chromatography (HPLC), and the influences of coating solvents, dimethylformamide (DMF) and tetrahydrofuran (THF), which were used for coating the polymers on silica gel, on the helical structure of the polymers and their chiral recognition abilities were investigated. The structure analysis of PPA-1 , PPA-2 , PPA-3 , PPA-4 by 1H nuclear magnetic resonance (NMR), size exclusion chromatography (SEC), optical rotation, and circular dichroism (CD) spectra indicated that the polymers possess the cis‐transoidal structure with dynamic helical conformation. The polymers in THF seem to have shorter conjugated helical main chains along with a tighter twist conformation than those in DMF. The chiral recognition abilities of PPA-1 , PPA-2 , PPA-3 , PPA-4 with the different helical structures induced by the coating solvents were evaluated as the CSPs in HPLC. The helical structures of PPA-1 , PPA-2 , PPA-3 , PPA-4 induced with THF are preferable for chiral recognition for some racemates compared to those induced with DMF, and higher chiral recognition abilities of PPA-1 , PPA-2 , PPA-3 , PPA-4 were achieved using THF. Chirality 27:500–506, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
A variety of chiral derivatives of benzo[d]naphtho[1,2‐b]pyran‐6‐one were prepared in a single step by Et3N‐mediated condensation of homophthalic anhydride with different derivatives of (S)‐amino acid chlorides at –5 °C by employing a chiral pool methodology. Chirality 27:951–957, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
Four novel chiral amino alcohols were synthesized from D‐(+)‐camphor and utilized as ligands in a Cu(I)‐catalyzed asymmetric Henry reaction. The reactions were carried out under mild conditions with excellent enantioselectivities and moderate yields without the exclusion of air or moisture. The highest enantioselectivity was observed up to 94% enantiomeric excess (ee) with ligand L1 in toluene at room temperature. Chirality 27:761–765, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
Miyabe T  Hase Y  Iida H  Maeda K  Yashima E 《Chirality》2009,21(1):44-50
To develop a novel polymer-based asymmetric organocatalyst, a series of helical poly(phenyl isocyanide)s with functional pendant groups were prepared by modifying the side groups of the optically active helical poly(4-carboxyphenyl isocyanide) with a macromolecular helicity memory. Helical polyisocyanides partially modified with achiral amines, such as piperazine, maintained their chiral memory and enantioselectively catalyzed a direct aldol reaction. Although the enantioselectivity was low, the original helical poly(4-carboxyphenyl isocyanide) showed no catalytic activity. These results indicated that the macromolecular helicity of the modified polyisocyanides together with bifunctional amino and carboxy acid pendant residues arranged in a helical array along the polymer backbones plays an important role in the enantioselectivity.  相似文献   

13.
Four chiral C2‐symmetric diols were synthesized in a straightforward three‐step reaction and demonstrated excellent enantioselectivities and good overall yields. Their catalytic activities were examined via the addition of diethylzinc to various aldehydes. The enantioselective addition of diethylzinc to 2‐methoxybenzaldehyde gave the corresponding chiral secondary alcohol with high yields (up to 95%) and moderate to good enantiomeric excess (up to 88%). All synthesized ligands were evaluated in the addition of diethylzinc to various aldehydes in the presence of an additional metal such as Ti(IV) complexes. Chirality 28:593–598, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
Nine β‐aminoketones were synthesized via Mannich reaction when benzaldehyde was condensed with some primary amines and acetophenone. The purified compounds were identified by using spectroscopic methods. The enantiomeric separation of these derivatives was carried out by high‐performance liquid chromatography (HPLC) using several coated and immobilized polysaccharide stationary phases, namely, Chiralcel® OD‐H, Chiralcel® OD, Chiralcel® OJ, Chiralpak® AD, Chiralpak® IA, and Chiralpak® IB using different mobile phases composed of n‐hexane and alcohol mixed in various ratios or pure ethanol or isopropanol. The retention behavior and selectivity of these chiral stationary phases were examined in isocratic normal phase mode. The results indicate that cellulose derivatives have higher enantioselectivity than amylose derivatives for the separation of racemic β‐amino ketones. Chirality 27:332–338, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
Although the preparation of single‐handed helical inorganic and hybrid organic‐inorganic nanotubes is well developed, approaches to the formation of single‐handed organopolymeric nanotubes are limited. Here, left‐handed helical m‐phenylenediamine‐formaldehyde resin and 3‐aminophenol‐formaldehyde resin nanotubes were prepared by using N‐palmitoyl glucosamine that can self‐assemble into left‐handed twisted nanoribbons in a mixture of methanol and water. In the reaction mixture, the helical pitch of the nanoribbons decreased with increasing reaction time. The resin nanotubes were obtained after removing the N‐palmitoyl glucosamine template, and circular dichroism spectroscopy indicated that the organopolymeric nanotubes had optical activity. Carbonaceous nanotubes were then prepared by carbonization of the 3‐aminophenol‐formaldehyde resin nanotubes.  相似文献   

16.
Novel optically active carbon anionic initiators bearing a chiral oxazole substituent on fluorene ring, (S)‐1‐(9H‐fluoren‐2‐yl)‐4‐isopropyl‐4, 5‐dihydrooxazole lithium ((S)‐1‐FIDD‐Li) and (S)‐2‐(9H‐fluoren‐2‐yl)‐4‐isopropyl‐4, 5‐dihydrooxazole lithium ((S)‐2‐FIDD‐Li), were synthesized. Anionic polymerizations of achiral polyisocyanates with the chiral initiators were investigated and optical rotation of the obtained polymers were attributed to asymmetric induction of the chiral initiators. The crowded substituent of initiator ((S)‐2‐FIDD‐Li) seems to reduce the polymerizability of isocyanates and yet enhances the chiral induced ability in polymerization. Chirality 27:449–453, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Chiral ionic liquids (ILs) have drawn more and more attention in separation science; however, only a few papers focused on the application of chiral ILs as chiral ligands in LE‐CE. In this article, a novel amino acid ionic liquid (AAIL), tetramethylammonium L‐hydroxyproline ([TMA][L‐OH‐Pro]), was first applied as a chiral ligand to evaluate its enantioselectivity towards several aromatic amino acids in ligand‐exchange capillary electrophoresis (LE‐CE) and ligand‐exchange micellar electrokinetic capillary chromatography (LE‐MEKC). In the LE‐CE system, excellent separations were achieved for tryptophan (Rs = 3.03) and 3, 4‐dihydroxyphenylalanine (DOPA) (Rs = 4.35). Several parameters affecting the enantioseparation were systematically investigated, including AAIL concentration, type and concentration of central metal ion, buffer pH, as well as applied voltage. The optimum separation was obtained with 60 mM AAIL containing 30 mM Cu (II) at pH 4.5. Additionally, an LE‐MEKC system was established to further study the enantioselectivity of [TMA][L‐OH‐Pro] towards selected analytes. As observed, the separations of the enantiomers of tryptophan, phenylalanine, and histidine were all improved compared to the LE‐CE system. The results indicated that the application of AAILs as chiral ligands is a promising method in chiral separation science. Chirality 27:58–63, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Summary We studied the effect of incorporating a chiral terminal amino acid residue (L-leucine) on the helical screw sense of a previously characterized achiral helical polypeptide module-[glycine-(Cα,α-di-n-butylglycine)-glycine]2-by means of CD spectroscopy and conclude that the presence of this residue at the carboxyl terminal induces a predominantly left handed helical conformation of the helix.  相似文献   

19.
To understand the terminal effect of chiral residue for determining a helical screw sense, we adopted five kinds of peptides IV containing N‐ and/or C‐terminal chiral Leu residue(s): Boc–L ‐Leu–(Aib–ΔPhe)2–Aib–OMe ( I ), Boc–(Aib–ΔPhe)2–L ‐Leu–OMe ( II ), Boc–L ‐Leu–(Aib–ΔPhe)2–L ‐Leu–OMe ( III ), Boc–D ‐Leu–(Aib–ΔPhe)2–L ‐Leu–OMe ( IV ), and Boc–D ‐Leu–(Aib–ΔPhe)2–Aib–OMe ( V ). The segment –(Aib–ΔPhe)2– was used for a backbone composed of two “enantiomeric” (left‐/right‐handed) helices. Actually, this could be confirmed by 1H‐nmr [nuclear Overhauser effect (NOE) and solvent accessibility of NH resonances] and CD spectroscopy on Boc–(Aib–ΔPhe)2–Aib–OMe, which took a left‐/right‐handed 310‐helix. Peptides IV were also found to take 310‐type helical conformations in CDCl3, from difference NOE measurement and solvent accessibility of NH resonances. Chloroform, acetonitrile, methanol, and tetrahydrofuran were used for CD measurement. The CD spectra of peptides IIII in all solvents showed marked exciton couplets with a positive peak at longer wavelengths, indicating that their main chains prefer a left‐handed screw sense over a right‐handed one. Peptide V in all solvents showed exciton couplets with a negative peak at longer wavelengths, indicating it prefers a right‐handed screw sense. Peptide IV in chloroform showed a nonsplit type CD pattern having only a small negative signal around 280 nm, meaning that left‐ and right‐handed helices should exist with almost the same content. In the other solvents, peptide IV showed exciton couplets with a negative peak at longer wavelengths, corresponding to a right‐handed screw sense. From conformational energy calculation and the above 1H‐nmr studies, an N‐ or C‐terminal L ‐Leu residue in the lowest energy left‐handed 310‐helical conformation was found to take an irregular conformation that deviates from a left‐handed helix. The positional effect of the L ‐residue on helical screw sense was discussed based on CD data of peptides IV and of Boc–(L ‐Leu–ΔPhe)n–L ‐Leu–OMe (n = 2 and 3). © 1999 John Wiley & Sons, Inc. Biopoly 49: 551–564, 1999  相似文献   

20.
Myung Ho Hyun 《Chirality》2015,27(9):576-588
Crown ether‐based chiral stationary phases (CSPs) have been known to be useful for the resolution of racemic primary amino compounds. In particular, CSPs based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid have been reported to be useful for the resolution of secondary amino compounds as well as primary amino compounds. In this article, the process of developing various CSPs based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid to improve the chiral recognition efficiency and/or the stability of the CSPs and their applications to the resolution of various primary and nonprimary amino compounds are reviewed. Chirality 27:576588, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号