首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Twenty-four 1,2-diarylbenzimidazole derivatives were designed, synthesized and biologically evaluated. It turned out that most of them were potential anticancer drugs. Among them, compound c24 showed the highest anti-tumor activity (GI50 = 0.71–2.41 μM against HeLa, HepG2, A549 and MCF-7 cells), and low toxicity to normal cells (CC50 > 100 μM against L02 cells). In the microtubule binding assay, c24 showed the most potent inhibition of microtubule polymerization (IC50 = 8.47 μM). The binding ability of compound c24 to tubulin crystal was verified by molecular docking simulation experiment. Further studies on HepG2 and HeLa cells showed that compound c24 could cause mitotic arrest of tumor cells to G2/M phase then inducing apoptosis. To sum up, compound c24 is a promising microtubule assembly inhibitor.  相似文献   

2.
A series of novel (E)-3-(3,4-dihydroxyphenyl)acrylylpiperazine derivatives had been synthesized and evaluated their biological activities as potential tubulin polymerization inhibitors. Among these compounds, compound 3q exhibited potent antiproliferative activities against three cancer cell lines in vitro, and antitubulin polymerization activity with IC50 of 0.92 μM, which was superior to that of colchicine (IC50 = 1.34 μM). Docking simulation was performed to insert compound 3q into the crystal structure of tubulin at colchicine binding site to determine the probable binding model. These results suggested that compound 3q may be a promising antitubulin agent for the potential treatment of cancer.  相似文献   

3.
A series of aminochalcone derivatives have been synthesized, characterized by HRMS, 1H NMR and 13C NMR and evaluated for their antiproliferative activity against HepG2 and HCT116 human cancer cell lines. The most of new synthesized compounds displayed moderate to potent antiproliferative activity against test cancer cell lines. Among the derivatives, compound 4 displayed potent inhibitory activity with IC50 values ranged from 0.018 to 5.33 μM against all tested cancer cell lines including drug resistant HCT-8/T. Furthermore, this compound showed low cytotoxicity on normal human cell lines (LO2). The in vitro tubulin polymerization assay showed that compound 4 inhibited tubulin assembly in a concentration-dependent manner with IC50 value of 7.1 μM, when compared to standard colchicine (IC50 = 9.0 μM). Further biological evaluations revealed that compound 4 was able to arrest the cell cycle in G2/M phase. Molecular docking study demonstrated the interaction of compound 4 at the colchicine binding site of tubulin. All the results indicated that compound 4 is a promising inhibitor of tubulin polymerization for the treatment of cancer.  相似文献   

4.
A series of chalcones containing naphthalene moiety 4a4p have been synthesized, characterized by 1H NMR and 13C NMR and evaluated for their in vitro anticancer activity. The majority of the screened compounds displayed potent anticancer activity against both HCT116 and HepG2 human cancer cell lines. Among the series, compound 4h with a diethylamino group at the para position of the phenyl ring exhibited the most potent anticancer activity against HCT116 and HepG2 cell lines with IC50 values of 1.20 ± 0.07 and 1.02 ± 0.04 μM, respectively. The preliminary structure–activity relationship has been summarized. Tubulin polymerization experiments indicated that 4h effectively inhibited tubulin polymerization and flow cytometric assay revealed that 4h arrests HepG2 cells at the G2/M phase in a dose-dependent manner. Furthermore, molecular docking studies suggested that 4h binds to the colchicine binding site of tubulin.  相似文献   

5.
A series of (E)-N-Aryl-2-oxo-2-(3,4,5-trimethoxyphenyl)acetohydrazonoyl cyanides have been synthesized and evaluated for their anticancer activity in human hepatocellular liver carcinoma HepG2 and breast adenocarcinoma MCF-7?cell lines. Among all the tested compounds, compound 3a, 3e and 3n displayed more activity than lead compound with IC50 value of 0.26–0.61?μM. Meanwhile, these compounds (3a, 3e and 3n) showed potent antiproliferative activity against a panel of cancer cells and the HCT-8/T multidrug resistant cell line with IC50 values in the range of 0.077– 7.44?μM. Flow cytometric analyses revealed that compound 3n induced cell cycle arrest in G2/M phases in a dose dependent manner. The compound 3n also displayed potent tubulin polymerization inhibition with an IC50 value of 0.9?µM, with ten folds more active than colchicine (IC50?=?9?μM). Molecular docking studies revealed that compound 3n efficiently interacted with the colchicine binding site of tubulin through hydrophobic, cation-π and hydrogen bond interaction. Furthermore, in silico pharmacokinetic prediction shown that these compounds have a good ADME-related physicochemical parameters. These results demonstrate that 3n exhibits potent cytotoxicity in cancer cells by targeting the colchicine binding site of tubulin and potentially acts as a therapeutic lead compound for the development of anticancer drugs.  相似文献   

6.
A new series of novel cinnamic acyl sulfonamide derivatives were designed and synthesized and evaluated their anti-tubulin polymerization activities and anticancer activities. One of these compounds, compound 5a with a benzdioxan group, was observed to be an excellent tubulin inhibitor (IC50?=?0.88?µM) and display the best antiproliferative activity against MCF-7 with an IC50 value of 0.17?μg/mL. Docking simulation was performed to insert compound 5a into the crystal structure of tubulin at colchicine binding site to determine the probable binding model. 3D-QSAR model was also built to provide more pharmacophore understanding that could be used to design new agents with more potent anti-tubulin polymerization activity.  相似文献   

7.
A series of 1,3,4-thiadiazol-2-amide derivatives (6aw) were designed and synthesized as potential inhibitors of tubulin polymerization and as anticancer agents. The in vitro anticancer activities of these compounds were evaluated against three cancer cell lines by the MTT method. Among all the designed compounds, compound 6f exhibited the most potent anticancer activity against A549, MCF-7 and HepG2 cancer cell lines with IC50 values of 0.03 μM, 0.06 μM and 0.05 μM, respectively. Compound 6f also exhibited significant tubulin polymerization inhibitory activity (IC50 = 1.73 μM), which was superior to the positive control. The obtained results, along with a 3D-QSAR study and molecular docking that were used for investigating the probable binding mode, could provide an important basis for further optimization of compound 6f as a novel anticancer agent.  相似文献   

8.
A new set of 4-phenylcoumarin derivatives was designed and synthesized aiming to introduce new tubulin polymerization inhibitors as anti-breast cancer candidates. All the target compounds were evaluated for their cytotoxic effects against MCF-7 cell line, where compounds 2f, 3a, 3b, 3f, 7a and 7b, showed higher cytotoxic effect (IC50?=?4.3–21.2?μg/mL) than the reference drug doxorubicin (IC50?=?26.1?μg/mL), additionally, compounds 1 and 6b exhibited the same potency as doxorubicin (IC50?=?25.2 and 28.0?μg/mL, respectively). The thiazolidinone derivatives 3a, 3b and 3f with potent and selective anticancer effects towards MCF-7 cells (IC50?=?11.1, 16.7 and 21.2?μg/mL) were further assessed for tubulin polymerization inhibition effects which showed that the three compounds were potent tubulin polymerization suppressors with IC50 values of 9.37, 2.89 and 6.13?μM, respectively, compared to the reference drug colchicine (IC50?=?6.93?μM). The mechanistic effects on cell cycle progression and induction of apoptosis in MCF-7 cells were determined for compound 3a due to its potent and selective cytotoxic effects in addition to its promising tubulin polymerization inhibition potency. The results revealed that compound 3a induced cell cycle cessation at G2/M phase and accumulation of cells in pre-G1 phase and prevented its mitotic cycle, in addition to its activation of caspase-7 mediating apoptosis of MCF-7 cells. Molecular modeling studies for compounds 3a, 3b and 3f were carried out on tubulin crystallography, the results indicated that the compounds showed binding mode similar to the co-crystalized ligand; colchicine. Moreover, pharmacophore constructed models and docking studies revealed that thiazolidinone, acetamide and coumarin moieties are crucial for the activity. Molecular dynamics (MD) studies were carried out for the three compounds over 100?ps. MD results of compound 3a showed that it reached the stable state after 30?ps which was in agreement with the calculated potential and kinetic energy of compound 3a.  相似文献   

9.
Tubulin-targeting drugs have increasingly become the focus of anticancer drugs research. Twenty-five novel benzimidazole grafted benzsulfamide-containing pyrazole ring derivatives were synthesized and evaluated for bioactivity as potential tubulin polymerization inhibitors. Among them, compound 30 showed the most excellent inhibition against tubulin assembly (IC50?=?1.52?μM) and in vitro growth inhibitory activity against a panel of four human cancer cell lines (IC50?=?0.15, 0.21, 0.33 and 0.17?μM, respectively for A549, Hela, HepG2 and MCF-7). It could also validly induce A549 cell apoptosis, cause cell cycle arrest in G2/M phase and disrupt the cellular microtubule network. These results, along with molecular docking data, provided an important basis for further optimization of compound 30 as a potential anticancer agent.  相似文献   

10.
A series of novel dithiocarbamate compounds with the chalcone scaffold have been designed and synthesized, and their biological activities were also evaluated as potential antiproliferation and antitubulin polymerization inhibitors. Compound 2n showed the most potent biological activity in vitro, which inhibited the growth of MCF-7 cells with IC50 of 0.04 ± 0.01 μM and the polymerization of tubulin with IC50 of 6.8 ± 0.6 μM. To understand the tubulin–inhibitor interaction and the selectivity of the most active compound towards tubulin, molecular modeling studies were performed to dock compound 2n into the colchicine binding site, which suggested probable inhibition mechanism.  相似文献   

11.
In this study, a series of shikonin derivatives combined with benzoylacrylic had been designed and synthesized, which showed an inhibitory effect on both tubulin and the epidermal growth factor receptor (EGFR). In vitro EGFR and cell growth inhibition assay demonstrated that compound PMMB-317 exhibited the most potent anti-EGFR (IC50 = 22.7 nM) and anti-proliferation activity (IC50 = 4.37 μM) against A549 cell line, which was comparable to that of Afatinib (EGFR, IC50 = 15.4 nM; A549, IC50 = 6.32 μM). Our results on mechanism research suggested that, PMMB-317 could induce the apoptosis of A549 cells in a dose- and time-dependent manner, along with decrease in mitochondrial membrane potential (MMP), production of ROS and alterations in apoptosis-related protein levels. Also, PMMB-317 could arrest cell cycle at G2/M phase to induce cell apoptosis, and inhibit the EGFR activity through blocking the signal transduction downstream of the mitogen-activated protein MAPK pathway and the anti-apoptotic kinase AKT pathway; typically, such results were comparable to those of afatinib. In addition, PMMB-317 could suppress A549 cell migration through the Wnt/β-catenin signaling pathway in a dose-dependent manner. Additionally, molecular docking simulation revealed that, PMMB-317 could simultaneously combine with EGFR protein (5HG8) and tubulin (1SA0) through various forces. Moreover, 3D-QSAR study was also carried out, which could optimize our compound through the structure-activity relationship analysis. Furthermore, the in vitro and in vivo results had collectively confirmed that PMMB-317 might serve as a promising lead compound to further develop the potential therapeutic anticancer agents.  相似文献   

12.
A new series of 4-(4-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazole-3-thiol derivatives were synthesized as analogs for the anticancer drug combretastatin A-4 ( CA-4 ) and characterized using FT-IR, 1H-NMR, 13CNMR, and HR-MS techniques. The new CA-4 analogs were designed to meet the structural requirements of the highest expected anticancer activity of CA-4 analogs by maintaining ring A 3,4,5-trimethoxyphenyl moiety, and at the same time varying the substituents effect of the triazole moiety (ring B ). In silico analysis indicated that compound 3 has higher total energy and dipole moment than colchicine and the other analogs, and it has excellent distribution of electron density and is more stable, resulting in an increased binding affinity during tubulin inhibition. Additionally, compound 3 was found to interact with three apoptotic markers, namely p53, Bcl-2, and caspase 3. Compound 3 showed strong similarity to colchicine , and it has excellent pharmacokinetics properties and a good dynamic profile. The in vitro anti-proliferation studies showed that compound 3 is the most cytotoxic CA-4 analog against cancer cells (IC50 of 6.35 μM against Hep G2 hepatocarcinoma cells), and based on its selectivity index (4.7), compound 3 is a cancer cytotoxic-selective agent. As expected and similar to colchicine , compound 3 -treated Hep G2 hepatocarcinoma cells were arrested at the G2/M phase resulting in induction of apoptosis. Compound 3 tubulin polymerization IC50 (9.50 μM) and effect on Vmax of tubulin polymerization was comparable to that of colchicine (5.49 μM). Taken together, the findings of the current study suggest that compound 3 , through its binding to the colchicine-binding site at β-tubulin, is a promising microtubule-disrupting agent with excellent potential to be used as cancer therapeutic agent.  相似文献   

13.
As restricted CA-4 analogues, a novel series of [1,2,4]triazolo[1,5-a]pyrimidines possessing 3,4,5-trimethoxylphenyl groups has been achieved successfully via an efficient one-pot three-component reaction of 3-(3,4,5-trimethoxyphenyl)-1H-1,2,4-triazol-5-amine, 1,3-dicarbonyl compounds and aldehydes. Initial biological evaluation demonstrated some of target compounds displayed potent antitumor activity in vitro against three cancer cell lines. Among them, the most highly active analogue 26 inhibited the growth of HeLa, and A549 cell lines with IC50 values at 0.75, and 1.02 μM, respectively, indicating excellent selectivity over non-tumoural cell line HEK-293 (IC50 = 29.94 μM) which suggested that the target compounds might possess a high safety index. Moreover, cell cycle analysis illustrated that the analogue 26 significantly induced HeLa cells arrest in G2/M phase, meanwhile the compound could dramatically affect cell morphology and microtubule networks. In addition, compound 28 exhibited potent anti-tubulin activity with IC50 values of 9.90 μM, and molecular docking studies revealed the analogue occupied the colchicine-binding site of tubulin. These observations suggest that [1,2,4]triazolo[1,5-a]pyrimidines represent a new class of tubulin polymerization inhibitors and well worth further investigation aiming to generate potential anticancer agents.  相似文献   

14.
A new series of pyrano chalcone derivatives containing indole moiety (342, 49a49r) were synthesized and evaluated for their antiproliferative activities. Among all the compounds, compound 49b with a propionyloxy group at the 4-position of the left phenyl ring and N-methyl-5-indoly on the right ring displayed the most potent cytotoxic activity against all tested cancer cell lines including multidrug resistant phenotype, which inhibits cancer cell growth with IC50 values ranging from 0.22 to 1.80 μM. Furthermore, 49b significantly induced cell cycle arrest in G2/M phase and inhibited the polymerization of tubulin. Molecular docking analysis demonstrated the interaction of 49b at the colchicine binding site of tubulin. In experiments in vivo, 49b exerted potent anticancer activity in HepG2 human liver carcinoma in BALB/c nude mice. These results indicated these compounds are promising inhibitors of tubulin polymerization for the potential treatment of cancer.  相似文献   

15.
Based on our previous research, three series of new triazolylthioacetamides possessing 3,4,5-trimethoxyphenyl moiety were synthesized, and evaluated for antiproliferative activities and inhibition of tubulin polymerization. The most promising compounds 8b and 8j demonstrated more significant antiproliferative activities against MCF-7, HeLa, and HT-29 cell lines than our lead compound 6. Moreover, analogues 8f, 8j, and 8o manifested more potent antiproliferative activities against HeLa cell line with IC50 values of 0.04, 0.05 and 0.16?μM, respectively, representing 100-, 82-, and 25-fold improvements of the activity compared to compound 6. Furthermore, the representative compound, 8j, was found to induce significant cell cycle arrest at the G2/M phase in HeLa cell lines via a concentration-dependent manner. Meanwhile, compound 8b exhibited the most potent tubulin polymerization inhibitory activity with an IC50 value of 5.9?μM, which was almost as active as that of CA-4 (IC50?=?4.2?μM). Additionally, molecular docking analysis suggested that 8b formed stable interactions in the colchicine-binding site of tubulin.  相似文献   

16.
A series of cis-restricted 3,4-diaryl-5-aminoisoxazoles have been synthesized and evaluated for their biological activities. Among them, compound 11a and 13a displayed potent cytotoxic activities in vitro against five human cancer cell lines with IC50 values in the low micromolar range and two compounds inhibited tubulin polymerization with IC50 value of 1.8, and 2.1 μM, respectively, similar to that of CA-4. Compound 13a could arrest at the G2/M phase of the cell cycle at the concentration of 0.1 and 1.0 μM and induce apoptosis at 0.1–1.0 μM.  相似文献   

17.
A series of terphenyl based 4-aza-2,3-didehydropodophyllotoxin conjugates (8ar) were synthesized by a straightforward one-step multicomponent synthesis that demonstrated anticancer activity against five human cancer cell lines (lung, colon, renal, prostate and cervical). All the tested compounds showed potent anticancer activity with IC50 values ranging from 0.87 to 16.59 μM. Among them compounds 8n and 8p showed significant anticancer activity in lung cancer cells with IC50 values 0.91 and 0.87 μM, respectively. Flow cytometric analysis revealed that these compounds induced cell cycle arrest in G2/M phase in A549 cell line leading to caspase-3 dependent apoptotic cell death. The tubulin polymerization assay and immunofluorescence analysis showed that these compounds effectively inhibit microtubule assembly at both molecular and cellular levels in A549 cells. Further, Hoechst staining, DNA fragmentation analysis also suggested that these compounds induced cell death by apoptosis. Overall, the current study demonstrated that the synthesis of terphenyl based 4-aza-2,3-didehydropodophyllotoxin conjugates as promising anticancer agents with G2/M cell cycle arrest and apoptotic-inducing activities via targeting tubulin.  相似文献   

18.
A new class of hybrid molecules containing cinnamide subunit linked to benzophenone as inhibitors of tubulin polymerization were synthesized and evaluated for their anticancer potential. These hybrids exhibit anticancer activity with IC50 values ranging from 0.06 to 16.3 μM. Compounds 4f and 4g possessing fluoro and trifluoromethyl on the cinnamido subunit showed significant cytotoxic activity with IC50 values 0.06 and 0.09 μM against HeLa cell line, respectively. These compounds showed cell cycle arrest at G2/M phase of the cell cycle and inhibited tubulin polymerization followed by activation of caspase-3 activity and apoptotic cell death. Further in vitro tubulin polymerization assay showed that the level of tubulin inhibition was comparable to that of 2a for the compounds 4f and 4g. Moreover, Hoechst 33258 staining and DNA fragmentation assay suggested that these compounds induce cell death by apoptosis. Overall, the current study demonstrates that the synthesis of benzophenone linked cinnamide subunit conjugates as promising anticancer agents with G2/M arrest and apoptotic-inducing ability via targeting tubulin.  相似文献   

19.
A novel series of thiazole-naphthalene derivatives as tubulin polymerisation inhibitors were designed, synthesised, and evaluated for the anti-proliferative activities. The majority of the tested compounds exhibited moderate to potent antiproliferative activity on the MCF-7 and A549 cancer cell lines. Among them, compound 5b was found to be the most active compound with IC50 values of 0.48 ± 0.03 and 0.97 ± 0.13 μM. Moreover, mechanistic studies revealed that 5b significantly inhibited tubulin polymerisation with an IC50 value of 3.3 µM, as compared to the standard drug colchicine (IC50 = 9.1 μM). Further cellular mechanism studies elucidated that 5b arrested the cell cycle at G2/M phase and induced apoptosis in MCF-7 cancer cells. Molecular modelling study indicated that 5b binds well to the colchicine binding site of tubulin. In summary, these results suggest that 5b represents a promising tubulin polymerisation inhibitor worthy of further investigation as potential anticancer agents.  相似文献   

20.
As a continuation of our efforts to discover and develop the apoptosis inducing 4-anilino-2-(2-pyridyl)pyrimidines as potential anticancer agents, we explored replacing the 2-pyridyl group by other aryl groups. SAR studies showed that the 2-pyridyl group can be replaced by a 3-pyridyl, 4-pyridyl and 2-pyrazinyl group, and that the SAR for the anilino group was similar to that of the 2-pyridyl series. However, replacement of the 2-pyridyl group by a phenyl group, a 3,5-dichloro-4-pyridyl group, or a saturated ring led to inactive compounds. Several potent compounds, including 2f, 3d, 3j and 4a, with EC50 values of 0.048–0.024 μM in the apoptosis induction assay against T47D cells, were identified through the SAR studies. In a tubulin polymerization assay, compound 2f, which was active against all the three cell lines tested (T47D, HTC116 and SNU398), inhibited tubulin polymerization with an IC50 value of 0.5 μM, while compound 2a, which was active against T47D cells but not active against HTC116 and SNU398 cells, was not active in the tubulin assay at up to 50 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号