首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and rapid chiral high‐performance liquid chromatography (HPLC) method was developed and validated for bioanalysis of clopidogrel enantiomers on rat dried blood spots (DBS). Clopidogrel enantiomers were extracted from DBS using ethanol: methanol (80:20, v/v) and separated on a Chiralcel OJ‐H column containing cellulose tris (4‐methly benzoate) as a polysaccharide stationary phase using n‐hexane–ethanol‐diethylamine (70:30, 0.1 v/v) as a mobile phase at a flow rate of 1.0 mL/min. The detection was carried out at 220 nm using a photodiode array (PDA) detector while the elution order of the enantiomers was determined by a polarimeter connected to PDA in series. The effect of hematocrit on extraction of clopidogrel enantiomers from DBS was evaluated and no interference from endogenous substances was noticed. The overall accuracy of (R) and (S) enantiomers of clopidogrel from DBS were 91.6 and 89.2%, respectively. The calibration curves were linear over the concentration range of 1–500 µg/mL for both enantiomers. The results show that the method is specific, precise, and reproducible (intra‐ and interday precision relative standard deviations (RSDs) <10.0%). The stability of racemic clopidogrel was performed under all storage conditions and the results were found to be well within the acceptance limits. Chirality 26:102–107, 2014.© 2014 Wiley Periodicals, Inc.  相似文献   

2.
8‐Prenylnaringenin (8PN) is a naturally occurring bioactive chiral prenylflavonoid found most commonly in the female flowers of hops (Humulus lupulus L.). A stereospecific method of analysis for 8PN in biological fluids is necessary to study the pharmacokinetic disposition of each enantiomer. A novel and simple liquid chromatographic‐electrospray ionization‐mass spectrometry (LC‐ESI‐MS) method was developed for the simultaneous determination of R‐ and S‐8PN in rat serum and urine. Carbamazepine was used as the internal standard (IS). Enantiomeric resolution of 8PN was achieved on a Chiralpak® AD‐RH column with an isocratic mobile phase consisting of 2‐propanol and 10 mM ammonium formate (pH 8.5) (40:60, v/v) and a flow rate of 0.7 mL/min. Detection was achieved using negative selective ion monitoring (SIM) of 8PN at m/z 339.15 for both enantiomers and positive SIM m/z at 237.15 for the IS. The calibration curves for urine were linear over a range of 0.01–75 µg/mL and 0.05–75 µg/mL for serum with a limit of quantification of 0.05 µg/mL in serum and 0.01 µg/mL in urine. The method was successfully validated showing that it was sensitive, reproducible, and accurate for enantiospecific quantification of 8PN in biological matrices. The assay was successfully applied to a preliminary study of 8PN enantiomers in rat. Chirality 26:419–426, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Cemil Aydoğan 《Chirality》2018,30(10):1144-1149
A novel chiral porous‐layer stationary phase was developed for use in open‐tubular nano liquid chromatography. The stationary phase was prepared by an in‐situ polymerization of 3‐chloro‐2‐hydroxypropylmethacrylate (HPMA‐Cl) and ethylene dimethacrylate (EDMA). The reactive chloro groups at the surface of the porous stationary phase were reacted with β‐Cyclodextrin (β‐CD). The resulting morphology was characterized by using scanning electron microscopy (SEM) and Fourier‐transform infrared spectroscopy (FT‐IR). The chromatographic performance of the column was evaluated by hydrophilic interaction chromatography (HILIC). Amino acids were used as test solutes. The running buffer conditions for the enantioseparation were found to be 85% acetonitrile (ACN):10%MeOH: 5% H2O at 0.1% v/v trifluoro acetic acid (TFA) (flow rate: 800 nL/min). The enantioseparation provided high theoretical plate numbers up to 26 000 platesm?1. A good retention capacity within satisfactory retention times was also achieved. Real sample applicability of this column to the separation of amino acid enantiomers in fruit juice sample was demonstrated.  相似文献   

4.
《Chirality》2017,29(6):225-238
Stereoselective high‐performance liquid chromatographic and subcritical fluid chromatographic separations of 19 Nα‐Fmoc proteinogenic amino acid enantiomers were carried out by using Quinidine ‐based zwitterionic and anion‐exchanger‐type chiral stationary phases Chiralpak ZWIX(−) and QD‐AX. For optimization of retention and enantioselectivity, the ratio of bulk solvent components (MeOH/MeCN, H2O/MeOH, or CO2/MeOH) and the nature and concentration of the acid and base additives (counter‐ and co‐ions) were systematically varied. The effect of column temperature on the enantioseparation was investigated and thermodynamic parameters were calculated from the van't Hoff plots ln α vs. 1/T. The thermodynamic parameters revealed that the enantioseparations were enthalpy‐driven. The elution sequence was determined in all cases and with the exception of Fmoc‐Cys(Trt)‐OH, it was identical on both chiral stationary phases whereby the L‐enantiomers eluted before the D‐enantiomers.  相似文献   

5.
The effects of temperature on the chiral recognition of cyclic β‐amino acid enantiomers on zwitterionic [Chiralpak ZWIX(+) and ZWIX(–)] chiral stationary phases were investigated. Experiments were performed at different mobile phase compositions and under 10°C column temperature increments in the temperature range 10–50°C. Apparent thermodynamic parameters and Tiso values were calculated from plots of ln k and ln α versus 1/T, respectively. Unusual temperature behavior was observed, especially on the ZWIX(–) column, where the application of MeOH/MeCN (50/50 v/v) containing 25 mM triethylamine and 50 mM formic acid as mobile phase led to nonlinear van't Hoff plots and increasing retention time with increasing temperature. On both columns, both enthalpically and entropically driven separations were observed. Chirality 26:385–393, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
Peptide stereoisomer analysis is of importance for quality control of therapeutic peptides, the analysis of stereochemical integrity of bioactive peptides in food, and the elucidation of the stereochemistry of peptides from a natural chiral pool which often contains one or more D‐amino acid residues. In this work, a series of model peptide stereoisomers (enantiomers and diastereomers) were analyzed on a zwitterionic ion‐exchanger chiral stationary phase (Chiralpak ZWIX(+) 5 µm), in order to investigate the retention and separation performance for such compounds on this chiral stationary phase and elucidate its utility for this purpose. The goal of the study focused on 1) investigations of the effects of the sample matrix used to dissolve the peptide samples; 2) optimization of the mobile phase (enabling deriving information on factors of relevance for retention and separation); and 3) derivation of structure–selectivity relationships. It turned out that small di‐ and tripeptides can be well resolved under optimized conditions, typically with resolutions larger than 1.5. The optimized mobile phase often consisted of methanol–tetrahydrofuran–water (49:49:2; v/v/v) with 25 mM formic acid and 12.5 mM diethylamine. This work proposes some guidance on which mobile phases can be most efficiently used for peptide stereoisomer separations on Chiralpak ZWIX. Chirality 28:5–16, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Aydogan C  Denizli A 《Chirality》2012,24(8):606-609
This article describes the development of a polybutylmethacrylate‐based monolithic capillary column as a chiral stationary phase. The chiral monolithic column was prepared by polymerization of butyl methacrylate (BMA), ethylene dimethacrylate (EDMA), and N‐methacryloyl‐l ‐glutamic acid (MAGA) in the presence of porogens. The porogen mixture included N,N‐dimethyl formamide and phosphate buffer. MAGA was used as a chiral selector. The effect of MAGA content was investigated on electrochromatographic enantioseparation of d,l ‐histidine, d,l ‐tyrosine, d,l ‐phenyl alanine, and d,l ‐glutamic acid. The effect of acetonitrile (ACN) content in mobile phase on electro‐osmotic flow was also investigated. It was demonstrated that the poly(BMA‐EDMA‐MAGA) monolithic chiral column can be used for the electrochromatographic enantioseparation of amino acids by capillary electrochromatography (CEC). The mobile phase was ACN/10 mM phosphate buffer (45:55%) adjusted to pH 2.7. It was observed that l ‐enantiomers of the amino acids migrated before d ‐enantiomers. The separation mechanism of electrochromatographic enantioseparation of amino acids in CEC is discussed. Chirality 24:606–609, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
《Chirality》2017,29(6):247-256
The enantioresolution and determination of the enantiomeric purity of 32 new xanthone derivatives, synthesized in enantiomerically pure form, were investigated on (S ,S )‐Whelk‐O1 chiral stationary phase (CSP). Enantioselectivity and resolution (α and RS) with values ranging from 1.41–6.25 and from 1.29–17.20, respectively, were achieved. The elution was in polar organic mode with acetonitrile/methanol (50:50 v/v ) as mobile phase and, generally, the (R )‐enantiomer was the first to elute. The enantiomeric excess (ee ) for all synthesized xanthone derivatives was higher than 99%. All the enantiomeric pairs were enantioseparated, even those without an aromatic moiety linked to the stereogenic center. Computational studies for molecular docking were carried out to perform a qualitative analysis of the enantioresolution and to explore the chiral recognition mechanisms. The in silico results were consistent with the chromatographic parameters and elution orders. The interactions between the CSP and the xanthone derivatives involved in the chromatographic enantioseparation were elucidated.  相似文献   

9.
A simple high performance liquid chromatography method HPLC‐UV for simultaneous enantiomeric determination of propranolol, metoprolol, pindolol, and atenolol in natural water samples was developed and validated, using a molecularly imprinted polymer solid‐phase extraction. To achieve this purpose, Lux® Cellulose‐1/Sepapak‐1 (cellulose tris‐(3,5‐dymethylphenylcarbamate)) (Phenomenex, Madrid, Spain) chiral stationary phase was used in gradient elution and normal phase mode at ambient temperature. The gradient elution program optimized consisted of a progressive change of the mobile phase polarity from n‐hex/EtOH/DEA 90/10/0.5 (v/v/v) to 60/40/0.5 (v/v/v) in 13 min, delivered at a flow rate of 1.3 ml/min and a sudden change of flow rate to 2.3 ml/min in 1 min. Critical steps in any molecularly imprinted polymer extraction protocol such as the flow rate to load the water sample in the cartridges and the breakthrough volume were optimized to obtain the higher extraction recoveries for all compounds. In optimal conditions (100 ml breakthrough volume loaded at 2.0 ml/min), extraction recoveries for the four pairs of β‐blockers were near 100%. The MIP‐SPE‐HPLC‐UV method developed demonstrates good linearity (R2 ≥ 0.99), precision, selectivity, and sensitivity. Method limit detection was 3.0 µg/l for propranolol and pindolol enantiomers and 20.0 and 22.0 µg/l for metoprolol and atenolol enantiomers, respectively. The proposed methodology should be suitable for routine control of these emerging pollutants in natural waters for a better understanding of the environmental impact and fate. Chirality 24:860–866, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Rapid and simple isocratic high‐performance liquid chromatographic methods with UV detection were developed and validated for the direct resolution of racemic mixtures of hyoscyamine sulfate and zopiclone. The method involved the use of αl‐acid glycoprotein (AGP) as chiral stationary phase. The stereochemical separation factor (?) and the stereochemical resolution factor (Rs) obtained were 1.29 and 1.60 for hyoscyamine sulfate and 1.47 and 2.45 for zopiclone, respectively. The method was used for determination of chiral switching (eutomer) isomers: S‐hyoscyamine sulfate and eszopiclone. Several mobile phase parameters were investigated for controlling enantioselective retention and resolution on the chiral AGP column. The influence of mobile phase, concentration and type of uncharged organic modifier, ionic strength, and column temperature on enantioselectivity were studied. Calibration curves were linear in the ranges of 1–10 µg mL‐1 and 0.5–5 µg mL‐1 for S‐hyoscyamine sulfate and eszopiclone, respectively. The method is specific and sensitive, with lower limits of detection and quantifications of 0.156, 0.515 and 0.106, 0.349 for S‐hyoscyamine sulfate and eszopiclone, respectively. The method was used to identify quantitatively the enantiomers profile of the racemic mixtures of the studied drugs in their pharmaceutical preparations. Thermodynamic studies were performed to calculate the enthalpic ΔH and entropic ΔS terms. The results showed that enantiomer separation of the studied drugs were an enthalpic process. Chirality 28:49–57, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
《Chirality》2017,29(10):603-609
d ‐ and l ‐Tryptophan (Trp) and d ‐ and l ‐kynurenine (KYN) were derivatized with a chiral reagent, (S )‐4‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐7‐(N,N‐dimethylaminosulfonyl)‐2,1,3‐benzoxadiazole (DBD‐PyNCS), and were separated enantiomerically by high‐performance liquid chromatography (HPLC) equipped with a triazole‐bonded column (Cosmosil HILIC) using tandem mass spectrometric (MS/MS) detection. Effects of column temperature, salt (HCO2NH4) concentration, and pH of the mobile phase in the enantiomeric separation, followed by MS detection of (S )‐DBD‐PyNCS‐d ,l ‐Trp and ‐d ,l ‐KYN, were investigated. The mobile phase consisting of CH3CN/10 mM ammonium formate in H2O (pH 5.0) (90/10) with a column temperature of 50–60 °C gave satisfactory resolution (R s) and mass‐spectrometric detection. The enantiomeric separation of d ,l ‐Trp and d ,l ‐KYN produced R s values of 2.22 and 2.13, and separation factors (α) of 1.08 and 1.08, for the Trp and KYN enantiomers, respectively. The proposed LC–MS/MS method provided excellent detection sensitivity of both enantiomers of Trp and KYN (5.1–19 nM).  相似文献   

12.
A stereoselective high‐performance liquid chromatographic (HPLC) method was developed and validated to determine S‐(?)‐ and R‐(+)‐propranolol in rat serum. Enantiomeric resolution was achieved on cellulose tris(3,5‐dimethylphenylcarbamate) immobilized onto spherical porous silica chiral stationary phase (CSP) known as Chiralpak IB. A simple analytical method was validated using a mobile phase consisted of n‐hexane‐ethanol‐triethylamine (95:5:0.4%, v/v/v) at a flow rate of 0.6 mL min‐1 and fluorescence detection set at excitation/emission wavelengths 290/375 nm. The calibration curves were linear over the range of 10–400 ng mL‐1 (R = 0.999) for each enantiomer with a detection limit of 3 ng mL‐1. The proposed method was validated in compliance with ICH guidelines in terms of linearity, accuracy, precision, limits of detection and quantitation, and other aspects of analytical validation. Actual quantification could be made for propranolol isomers in serum obtained from rats that had been intraperitoneally (i.p.) administered a single dose of the drug. The proposed method established in this study is simple and sensitive enough to be adopted in the fields of clinical and forensic toxicology. Molecular modeling studies including energy minimization and docking studies were first performed to illustrate the mechanism by which the active enantiomer binds to the β‐adrenergic receptor and second to find a suitable interpretation of how both enantiomers are interacting with cellulose tris(3,5‐dimethylphenylcarbamate) CSP during the process of resolution. The latter interaction was demonstrated by calculating the binding affinities and interaction distances between propranolol enantiomers and chiral selector. Chirality 26:194–199, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
A rapid and effective RP‐UHPLC‐DAD method for enantioseparation of three flavanones, i.e., flavanone, naringenin, and hesperetin, was developed and validated. Chromatographic separation of the analytes was performed using a Chiralpak AD‐3R analytical column under reverse phase conditions with methanol as the mobile phase. The method was validated in the concentration range of 0.2 to 50 µg/mL for enantiomers of flavanone and 0.5 to 50 µg/mL for enantiomers of naringenin and hesperetin. The limits of quantification were between 0.03 to 0.5 µg/mL. Intraday and interday precision were below 14% and accuracy varied from 0.04 to 8.17%. Chirality 28:147–152, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
Oxcarbazepine is a second‐generation antiepileptic drug indicated as monotherapy or adjunctive therapy in the treatment of partial seizures or generalized tonic–clonic seizures in adults and children. It undergoes rapid presystemic reduction with formation of the active metabolite 10‐hydroxycarbazepine (MHD), which has a chiral center at position 10, with the enantiomers (S)‐(+)‐ and R‐(?)‐MHD showing similar antiepileptic effects. This study presents the development and validation of a method of sequential analysis of oxcarbazepine and MHD enantiomers in plasma using liquid chromatography with tandem mass spectrometry (LC‐MS/MS). Aliquots of 100 μL of plasma were extracted with a mixture of methyl tert‐butyl ether: dichloromethane (2:1). The separation of oxcarbazepine and the MHD enantiomers was obtained on a chiral phase Chiralcel OD‐H column, using a mixture of hexane:ethanol:isopropanol (80:15:5, v/v/v) as mobile phase at a flow rate of 1.3 mL/min with a split ratio of 1:5, and quantification was performed by LC‐MS/MS. The limit of quantification was 12.5 ng oxcarbazepine and 31.25 ng of each MHD enantiomer/mL of plasma. The method was applied in the study of kinetic disposition of oxcarbazepine and the MHD enantiomers in the steady state after oral administration of 300 mg/12 h oxcarbazepine in a healthy volunteer. The maximum plasma concentration of oxcarbazepine was 1.2 µg/mL at 0.75 h. The kinetic disposition of MHD is enantioselective, with a higher proportion of the S‐(+)‐MHD enantiomer compared to R‐(?)‐MHD and an AUC0‐12 S‐(+)/R‐(?) ratio of 5.44. Chirality 25:897–903, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
A novel method for chiral separation of flurbiprofen enantiomers was developed using aqueous two‐phase extraction (ATPE) coupled with biphasic recognition chiral extraction (BRCE). An aqueous two‐phase system (ATPS) was used as an extracting solvent which was composed of ethanol (35.0% w/w) and ammonium sulfate (18.0% w/w). The chiral selectors in ATPS for BRCE consideration were L‐dioctyl tartrate and L‐tryptophan, which were screened from amino acids, β‐cyclodextrin derivatives, and L‐tartrate esters. Factors such as the amounts of L‐dioctyl tartrate and L‐tryptophan, pH, flurbiprofen concentration, and the operation temperature were investigated in terms of chiral separation of flurbiprofen enantiomers. The optimum conditions were as follows: L‐dioctyl tartrate, 80 mg; L‐tryptophan, 40 mg; pH, 4.0; flurbiprofen concentration, 0.10 mmol/L; and temperature, 25 °C. The maximum separation factor α for flurbiprofen enantiomers could reach 2.34. The mechanism of chiral separation of flurbiprofen enantiomers is discussed and studied. The results showed that synergistic extraction has been established by L‐dioctyl tartrate and L‐tryptophan, which enantioselectively recognized R‐ and S‐enantiomers in top and bottom phases, respectively. Compared to conventional liquid–liquid extraction, ATPE coupled with BRCE possessed higher separation efficiency and enantioselectivity without the use of any other organic solvents. The proposed method is a potential and powerful alternative to conventional extraction for separation of various enantiomers. Chirality 27:650–657, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
A novel method was developed for the simultaneous determination of guaifenesin (GUA) and ketorolac tromethamine (KET) enantiomers in plasma samples. Since GUA probably increases the absorption of coadministered drugs (e.g., KET), it would be extremely important to monitor KET plasma levels for the purpose of dose adjustment with a subsequent decrease in the side effects. Enantiomeric resolution was achieved on a polysaccharide‐based chiral stationary phase, amylose‐2, as a chiral selector under the normal phase (NP) mode and using ornidazole (ORN) as internal standard. This innovative method has the advantage of the ease and reliability of sample preparation for plasma samples. Sample clean‐up was based on simply using methanol for protein precipitation followed by direct extraction of drug residues using ethanol. Both GUA and KET enantiomers were separated using an isocratic mobile phase composed of hexane/isopropanol/trifluoroacetic acid, 85:15:0.05 v/v/v. Peak area ratios were linear over the range 0.05–20 µg/mL for the four enantiomers S (+) GUA, R (–) GUA, R (+) KET, and S (–) KET. The method was fully validated according to the International Conference on Harmonization (ICH) guidelines in terms of system suitability, specificity, accuracy, precision, robustness, and solution stability. Finally, this procedure was innovative to apply the rationale of developing a chiral high‐performance liquid chromatography (HPLC) procedure for the simultaneous quantitative analysis of drug isomers in clinical samples. Chirality 26:629–639, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
A direct chiral liquid chromatography–circular dichroism (LC‐CD) method was developed for the simple and rapid identification of N‐octylnortadalafil [(6R, 12aR)‐6‐(1,3‐benzodioxol‐5‐yl)‐2‐octyl‐2,3,6,7,12,12a‐hexahydropyrazino[1’,2’:1,6]pyrido[3,4‐b]indole‐1,4‐dione; RR‐OTDF] and its stereoisomers in dietary supplements. Samples were extracted with methanol. Compounds were then separated by chiral LC‐CD using Chiralcel OD‐RH (4.6 × 1 50 mm, 5 µm) with 5 mM ammonium formate (pH 3)/0.1% formic acid in acetonitrile (95:5, v/v) mixture solution (mobile phase A) and 0.1% formic acid in acetonitrile (mobile phase B). The isocratic elution used was mobile phase A / mobile phase B (3:7, v/v) at a flow rate of 1 ml/min. The column temperature was held at 30°C. RR‐OTDF and its stereoisomers were separated within 20 min with the resolution factors being over 2.0. Using this method, RR‐OTDF and (6R, 12aS)‐6‐(1,3‐benzodioxol‐5‐yl)‐2‐octyl‐2,3,6,7,12,12a‐hexahydropyrazino[1’,2’:1,6]pyrido[3,4‐b]indole‐1,4‐dione were detected in a dietary supplement. Chirality 28:204–208, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
An indirect reversed‐phase high‐performance liquid chromatographic separation and fluorescence detection of sitagliptin enantiomers in rat plasma was developed and validated. Deproteinized rat plasma containing racemic sitagliptin was derivatized with o‐phthalaldehyde and N‐acetyl‐L‐cysteine under alkaline conditions, converted to diastereomers, and separated on a Lichrospher 100 RP‐18e column using 20 mM phosphate buffer and methanol (45:55 v/v) as a mobile phase under isocratic mode of elution at a flow rate of 1.0 mL/min. Fluorescence detection was performed at 330 and 450 nm as excitation and emission wavelengths, respectively. The method was linear in the range of 50–5000 ng/ mL for both enantiomers. The intra‐ and interday accuracy and precision were within the predefined limits of ≤15% at all concentrations. The method was successfully applied to a pharmacokinetic study of sitagliptin after 5 mg/kg oral administration to Wistar rats. Robustness of the method was evaluated using design of experiments. Chirality 25:883–889, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Flecainide, an antiarrythmic agent, and its analogs were resolved on a high performance liquid chromatographic chiral stationary phase (CSP) based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid with the use of a mobile phase consisting of methanol‐acetonitrile‐trifluoroacetic acid‐triethylamine (80/20/0.1/0.3, v/v/v/v). The chiral resolution was quite successful, the separation factors (α) and the resolutions (RS) for 20 analytes including flecainide being in the range of 1.19–1.82 and 1.73–6.80, respectively. The ortho‐substituent of the benzoyl group of analytes was found to cause decrease in the retention times of analytes probably because of the conformational deformation of analytes originated from the steric hindrance exerted by the ortho‐substituent. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
A sensitive and enantioselective vancomycin chiral stationary phase high‐performance liquid chromatography–tandem mass spectrometry method was developed for the determination of trantinterol enantiomers in human plasma. Baseline resolution was achieved using the vancomycin chiral stationary phase known as Chirobiotic V with polar ionic mobile phase consisting of acetonitrile–methanol (60:40, v/v) containing 0.01% ammonia and 0.02% acetic acid at a flow rate of 1.0 mL/min. Waters Oasis HLB C18 solid phase extraction cartridges were used in the sample preparation of trantinterol samples from plasma. The detection was performed on a triple‐quadrupole tandem mass spectrometer by multiple reaction monitoring mode via electrospray ionization. The calibration curve was linear in a concentration range from 0.0606 to 30.3 ng/mL in plasma, with the lower limit of quantification of 0.0606 ng/mL. The intra‐ and interday precision (relative standard deviation) values were within 9.7% and the accuracy (relative error) was from ?6.6 to 7.2% at all quality control levels. The method was successfully applied to a study of stereoselective pharmacokinetics in human. Chirality 27:327–331, 2015.© 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号