首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
R/S mixture of monoterpene alcohol cis‐verbenol can be separated in preparative scale by its conversion into phthalic mono‐ester and subsequent crystallization of its diastereomeric salts with (R)‐α‐methylbenzylamine and (S)‐α‐methylbenzylamine. Finally, basic methanolysis of the resolved phthalic mono‐esters results (S)‐cis‐verbenol and (R)‐cis‐verbenol in high enantiomeric and diastereomeric purity.  相似文献   

2.
The optical resolution of p‐chloromandelic acid using (R)‐α‐phenylethylamine as resolving agent was presented. The effect of solvents, molar ratio of racemate to the resolving agent, filtration temperature as well as the amount of solvent on resolution was investigated by orthogonal experimentation. The binary melting point phase diagram and crystal structure analysis of diastereomeric salts rationalized the success of the resolution. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
A simple, efficient, and economical method based on the combination of the exceptional behavior of o,o′‐dibenzoyl‐ or o,o′‐di‐p‐toluyl‐(2R,3R)‐tartaric acid in chiral recognition processes, and the coordination ability of calcium or magnesium ion was developed for the resolution of phospholene oxides 1 . The calcium or magnesium salt of (?)‐o,o′‐dibenzoyl‐(2R,3R)‐tartaric acid 2 , 4 ‐ 6 or calcium hydrogen (?)‐o,o′‐di‐p‐toluyl‐(2R,3R)‐tartrate 3 may form crystalline diastereomeric coordination complexes with the appropriate antipode of substituted 3‐phospholene oxides 1 that makes possible efficient resolutions. Optically active phospholene oxides 1 were prepared directly by simply crystallization and digestion of the corresponding diastereomeric complexes so formed. Thermal behavior of the crystalline diastereomeric complexes was studied by simultaneous TG/DTA. The novel method may be of more general value in respect of the resolution of tertiary phosphine oxides. Chirality, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Accessible chiral syntheses of 3 types of (R)‐2‐sulfanylcarboxylic esters and acids were performed: (R)‐2‐sulfanylpropanoic (thiolactic) ester (53%, 98%ee) and acid (39%, 96%ee), (R)‐2‐sulfanylsucciinic diester (59%, 96%ee), and (R)‐2‐mandelic ester (78%, 90%ee) and acid (59%, 96%ee). The present practical and robust method involves (i) clean SN2 displacement of methanesulfonates of (S)‐2‐hydroxyesters by using commercially available AcSK with tris(2‐[2‐methoxyethoxy])ethylamine and (ii) sufficiently mild deacetylation. The optical purity was determined by the corresponding (2R,5R)‐trans‐thiazolidin‐4‐one and (2S,5R)‐cis‐thiazolidin‐4‐one derivatives based on accurate high‐performance liquid chromatography analysis with high‐resolution efficiency. Compared with the reported method utilizing AcSCs (generated from AcSH and CsCO3), the present method has several advantages, that is, the use of odorless AcCOSK reagent, reasonable reaction velocity, isolation procedure, and accurate, reliable optical purity determination. The use of accessible AcSK has advantages because of easy‐to‐handle odorless and hygroscopic solid that can be used in a bench‐top procedure. The Ti(OiPr)4 catalyst promoted smooth trans‐cyclo‐condensation to afford (2R,5R)‐trans‐thiazolidin‐4‐one formation of (R)‐2‐sulfanylcarboxylic esters with available N‐(benzylidene)methylamine under neutral conditions without any racemization, whereas (2S,5R)‐cis‐thiazollidin‐4‐ones were obtained via cis‐cyclo‐condensation and no catalysts. Direct high‐performance liquid chromatography analysis of methyl (R)‐mandelate was also performed; however, the resolution efficiency was inferior to that of the thaizolidin‐4‐one derivatizations.  相似文献   

5.
Axially chiral biphenyls such as (M,S)‐ 3k have been conveniently obtained by crystallization of their diastereomeric mixtures, which were synthesized from racemic 4,4′‐dimethoxy‐5,6,5′,6′‐bis(methylenedioxy)‐2‐carboxylester‐2′‐carboxyl‐biphenyls 4 and chiral amino alcohols (R)‐alaninol, (S)‐alaninol, (S)‐valinol, and (S)‐phenylalaninol. A crystallization‐induced configuration transformation of the biphenyls was thus achieved. It was found that amide formation of an (S)‐valinol or (S)‐phenylalaninol at the 2′‐position of the biphenyl usually induced the deposition of crystals with the (M)‐configuration from ethanol in yields higher than 50%. The absolute configurations (ACs) of two crystalline biphenyls have been determined by X‐ray crystallographic analysis. The ACs of nine biphenyls have been assigned based on their CD spectra. Further, stability investigation of these axially chiral biphenyls revealed that the ACs could revert upon redissolution. The energy barrier to epimerization between (P,R)‐ 3b and (M,R)‐ 3b was measured as ΔG# = 21.45 kcal/mol and the half‐life in ethanol at 301 K was 17.1 h. Chirality, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Compounds based on the pyrroloquinoxaline system can interact with serotonin 5‐HT3, cannabinoid CB1, and μ‐opioid receptors. Herein, a chiral pool synthesis of diastereomerically and enantiomerically pure bromolactam (S,R,R,R)‐ 14A is presented. Introduction of the cyclohexenyl ring at the N‐atom of (S)‐proline derivatives 8 or methyl (S)‐pyroglutamate ( 12 ) led to the N‐cyclohexenyl substituted pyrrolidine derivatives 4 and 13 , respectively. All attempts to cyclize the (S)‐proline derivatives 4 with a basic pyrrolidine N‐atom via [3 + 2] cycloaddition, aziridination, or bromolactamization failed. Fast aromatization occurred during treatment of cyclohexenamines under halolactamization conditions. In contrast, reaction of a 1:1 mixture of diastereomeric pyroglutamates (S,R)‐ 13bA and (S,S)‐ 13bB with LiOtBu and NBS provided the tricyclic bromolactam (S,R,R,R)‐ 14A with high diastereoselectivity from (S,R)‐ 13bA , but did not transform the diastereomer (S,S)‐ 13bB . The different behavior of the diastereomeric pyroglutamates (S,R)‐ 13bA and (S,S)‐ 13bB is explained by different energetically favored conformations. Chirality 26:793–800, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
In‐depth conformational analyses of 10 known eremophilane (= (1S,4aR,7R,8aR)‐decahydro‐1,8a‐dimethyl‐7‐(1‐methylethyl)napththalene) sesquiterpenes, 1 – 10 , from Petasites hybridus were performed with molecular mechanics as well as density functional theory methods. Electronic transition energies and rotational strengths of these eight eremophilane lactones and two petasins were calculated by time‐dependent density functional theory (B3PW91/TZVP). The absolute configurations of the constituents could be assigned by comparison of their simulated and experimental circular dichroism (CD) spectra in methanol as (4S,5R,8S,10R) ( 1 , 2 ), (2R,4S,5R,8S,10R) ( 3 , 4 , 5 ), (2R,4S,5R,8R,9R,10R) ( 6 ), (2R,4S,5R,8R,10R) ( 7 , 8 ), and (3R,4R,5R) ( 9 , 10 ). Single‐crystal X‐ray diffraction data of 8β‐hydroxyeremophilanolide ((8S)‐8‐hydroxyeremophil‐7(11)‐en‐12,8‐olide) ( 1 ) served as starting point for the theoretical conformational calculations of the 8β‐epimers of the eremophilane lactones. Experimental CD spectra as well as 1H NMR spectra of compound 1 in methanol were considerably dependent on sample concentration. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
The stereoisomers of α,α′-bis[3-(N,N-diethylcarbamoyl)-piperidino]-p-xylene ( 1 ) were synthesized. Rac ethyl nipecotate was resolved by diastereomeric (-)-D - and (+)-L-tartrate salt formation. The enantiomeric esters were hydrolyzed to the corresponding nipecotic acids, which were then converted into t-BOC derivatives. Treatment of the latter with diethylamine/isobutyl chloroformate and removal of the t-BOC protecting group afforded (R)- and (S)-N,N-diethylnipecotamides. Condensation of the latter with α,α′-dibromo-p-xylene gave (R,R)- and (S,S)- 1 . The meso-diastereomer was obtained by stereospecific synthesis in addition to our earlier procedure involving fractional crystallization of the diastereomeric mixture obtained by synthesis. The latter was resolved earlier into 1A , 1B , and 1C using chiral high-performance liquid chromatography (HPLC). Based on the stereospecific synthesis now achieved, 1A and 1B are assigned the configurations, (R,R) and (S,S) respectively, and 1C is assigned the meso configuration. The (R,S) structure of the latter is also confirmed by X-ray crystallography. © 1995 Wiley-Liss, Inc.  相似文献   

9.
The separation of rac‐o‐chloromandelic acid 1 with enantiopure aryloxypropylamine via diastereomeric salt formation was investigated. (R)‐o‐chloromandelic acid (R)‐ 1 , a key intermediate for the antithrombotic agent clopidogrel, was obtained in 65% yield and 98% ee by Dutch resolution of rac‐ 1 with (S)‐2‐hydroxyl‐3‐(p‐chlorophenoxy) propylamine (S)‐ 5 as resolving agent and (S)‐2‐hydroxyl‐3‐(o‐nitrophenoxy) propylamine (S)‐ 4 as nucleation inhibitor. Chirality 24:1013–1017, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
We follow template‐binding induced aggregation of nanoparticles enantioselectively imprinted against (S)‐propranolol, and the non‐imprinted ones, using photon correlation spectroscopy (dynamic light scattering). The method requires no separation steps. We have characterized binding of (R,S)‐propranolol to the imprinted polymers and determined the degree of non‐specificity by comparing the specific binding with the results obtained using non‐imprinted nanoparticles. Using (S)‐propranolol as a template for binding to (S)‐imprinted nanoparticle, and (R)‐propranolol as a non‐specific control, we have determined range of concentrations where chiral recognition can be observed. By studying aggregation induced by three analytes related to propranolol, atenolol, betaxolol, and 1‐amino‐3‐(naphthalen‐1‐yloxy)propan‐2‐ol, we were able to determine which parts of the template are involved in the specific binding, discuss several details of specific adsorption, and the structure of the imprinted site. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The present study describes the development of two approaches for the determination of the enantiopurity of both enantiomers of indatraline. Initially, a method was developed using different chiral solvating agents (CSAs) for diastereomeric discrimination regarding signal separation in 1H nuclear magnetic resonance (NMR) spectroscopy, revealing MTPA as a promising choice for the differentiation of the indatraline enantiomers. This CSA was also tested for its ideal molar ratio, temperature, and solvent. Optimized conditions could be achieved that made determination of enantiopurity for (1R,3S)‐indatraline up to 98.9% enantiomeric excess (ee) possible. To quantify even higher enantiopurities, a high‐performance liquid chromatography (HPLC) method based on a modified β‐cyclodextrine phase was established. The influence of buffer type, concentration, pH value, percentage and kind of organic modifier, temperature, injection volume as well as sample solvent on chromatographic parameters was investigated. Afterwards, the reliability of the established HPLC method was demonstrated by validation according to the ICH guideline Q2(R1) regarding specificity, accuracy, precision, linearity, and quantitation limit. The developed method proved to be strictly linear within a concentration range of 1.25–1000 μM for the (1R,3S)‐enantiomer and 1.25‐750 μM for its mirror image that enables a reliable determination of enantiopurities up to 99.75% ee for the (1R,3S)‐enantiomer and up to 99.67% ee for the (1S,3R)‐enantiomer. Chirality 25:923–933, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
The racemic structures of (RS)-2-amino-3-chloropropanoic acid [(RS)-ACP] and (RS)-2-amino-3-chloropropanoic acid hydrochloride [(RS-ACP·HCl] were examined to obtain (R)- and (S)-ACP via optical resolution by preferential crystallization. The melting point, infrared spectrum, solubility, and ternary solubility diagram suggested that (RS)-ACP·HCl exists as a conglomerate and that (RS)-ACP forms a racemic compound. Optical resolution by preferential crystallization of (RS)-ACP·HCl was successfully achieved to yield (R)- and (S)-ACP·HCl. Optically pure (R)- and (S)-ACP were obtained from the purified (R)-and (S)-ACP·HCl, respectively. © 1996 Wiley-Liss, Inc.  相似文献   

13.
First, (RS)-2-chloro-3-phenylpropanoic acid [(RS)-CPP] was optically resolved using ethyl (S)-phenylalaninate as a resolving agent, aiming at preparation of optically active 2-methylamino-3-phenylpropanoic acid (MPP). The (R)-CPP obtained as the sodium salt monohydrate was reacted with methylamine to give (S)-2-methylamino-3-phenylpropanoic acid [(S)-MPP]. Next, the optical resolution of (RS)-MPP was also attempted via molecular compound formation with optically active mandelic acid (MAN). The molecular compound of (R)-MPP with (S)-MAN [(R)-MPP (S)-MAN] was obtained as the less soluble diastereomeric compound, while the (S)-MPP (S)-MAN compound was found to be the more soluble one. Recrystallization of (R)-MPP (S)-MAN compound from water, followed by treatment with acetone, gave optically pure (R)-MPP in 79% yield, based on a half amount of the starting (RS)-MPP. The (S)-MPP obtained from (S)-MPP (S)-MAN compound was again subjected to formation of molecular compound with (R)-MAN to give optically pure (S,)-MPP in 66% yield. Chirality 9:386–389, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
Limonene-1,2-epoxide hydrolase (LEH) from Rhodococcus erythropolis DCL14, an enzyme involved in the limonene degradation pathway of this microlorganism, has a narrow substrate specificity. Of the compounds tested, the natural substrate, limonene-1,2-epoxide, and several alicyclic and 2-methyl-1,2-epoxides (e.g. 1-methylcyclohexene oxide and indene oxide), were substrates for the enzyme. When LEH was incubated with a diastereomeric mixture of limonene-1,2-epoxide, the sequential hydrolysis of first the (1R,2S)- and then the (1S,2R)-isomer was observed. The hydrolysis of (4R)- and (4S)-limonene-1,2-epoxide resulted in, respectively, (1S,2S,4R)- and (1R,2R,4S)-limonene-1,2-diol as the sole product with a diastereomeric excess of over 98%. With all other substrates, LEH showed moderate to low enantioselectivities (E ratios between 34 and 3).  相似文献   

15.
In order to define an enantioselective nuclear magnetic resonance (NMR) method for the antiasthmatic drug montelukast, a series of nine easily available products were evaluated as NMR chiral solvating agents (CSAs): D‐dibenzoyltartaric acid, D‐ditoluoyltartaric acid, (+)‐camphorsulfonic acid, (S)‐BINOL, (S)‐3,3’‐diphenyl‐2,2’‐binaphthyl‐1,1’‐diol, (R)‐3,3'′‐di‐9‐anthracenyl‐1,1'′‐bi‐2‐naphthol, (R)‐3,3'′‐di‐9‐phenanthrenyl‐1,1'′‐bi‐2‐naphthol, Pirkle's alcohol, and (?)‐cinchonidine. It was proved that most of the studied agents constitute diastereomeric complexes with both drug enantiomers in CD2Cl2 or CDCl3 solutions, thus permitting the direct 1H NMR detection of the unwanted S‐enantiomer, even at levels of 0.75%. (?)‐Cinchonidine was found to be the more convenient CSA in terms of NMR enantiodiscrimination power and ease of experimental requirements. The final method was validated and applied to the fast monitoring of the optical purity of montelukast “in‐process” samples, circumventing the need for tedious and slower analytical procedures like enantioselective chromatography or capillary electrophoresis. In addition, a method for the enantiopurity control of the commercial drug (montelukast sodium salt) was also established using (S)‐BINOL as NMR CSA. Chirality 25: 780–786, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
An efficient methodology for the preparation of the α‐tetrasubstituted proline analog (S,S,S)‐2‐methyloctahydroindole‐2‐carboxylic acid, (S,S,S)‐(αMe)Oic, and its enantiomer, (R,R,R)‐(αMe)Oic, has been developed. Starting from easily available substrates and through simple transformations, a racemic precursor has been synthesized in excellent yield and further subjected to HPLC resolution using a cellulose‐derived chiral stationary phase. Specifically, a semipreparative (250 mm × 20 mm ID) Chiralpak® IC column has allowed the efficient resolution of more than 4 g of racemate using a mixture of n‐hexane/tert‐butyl methyl ether/2‐propanol as the eluent. Multigram quantities of the target amino acids have been isolated in enantiomerically pure form and suitably protected for incorporation into peptides. Chirality, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

17.
Separation of optical isomers obtainable from trans‐norborn‐5‐ene‐2,3‐dicarboxylic acid methyl and tert‐butyl monoesters was performed by crystallization of the respective salts prepared with (R)‐ and (S)‐1‐phenylethylamine. Starting from racemic endo‐monomethyl ester of trans‐norborn‐5‐ene‐2,3‐dicarboxylic acid, prepared by partial hydrolysis of the cyclopentadiene‐dimethyl fumarate adduct, the corresponding (2R,3R)‐endo‐monoester was isolated in 97% enantiomeric excess (ee) yield after seven repeated crystallizations from tetrachloromethane. Starting from exo‐mono‐tert‐butyl ester of the same acid, prepared by alcoholysis of the cyclopentadiene‐maleic anhydride adduct followed by isomerization, (2R,3R)‐exo‐monoester was isolated in >98% ee yield after four repeated crystallizations from ethanol. Crystallization of the acids from the mother liquor containing (S)‐1‐phenylethylamine yielded products with inverse stereochemical configuration. Chirality 27:151–155, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Optically active 1,4-thiazane-3-carboxylic acid [TCA] was synthesized from cysteine via optical resolution by preferential crystallization. The intermediate (RS)-2-amino-3-[(2-chloroethyl)sulfanyl]propanoic acid hydrochlo-ride [(RS)-ACS?HCl] was found to exist as a conglomerate based on its melting point, solubility and IR spectrum. (RS)-ACS?HCl was optically resolved by preferential crystallization to yield (R)- and (S)-ACS?HCl. (R)- and (S)-ACS?HCl thus obtained were recrystallized from a mixture of hydrochloric acid and 2-propanol, taking account of the solubility of (RS)-ACS?HCl, efficiently yielding both enantiomers in optically pure forms. (R)- and (S)-TCA were then respectively synthesized by the cyclization of (R)- and (S)-ACS?HCl in ethanol in the presence of triethylamine.  相似文献   

19.
Summary A key intermediate, S-(–)-3-benzoylthio-2-methylpropanoic acid (1) was made in high optical purity by the lipase-catalyzed stereoselective esterification of racemic 1 with methanol in an organic solvent system. Among various lipases evaluated, Amano P-30 lipase from Pseudomonas sp. efficiently catalyzed the esterification of 1 to yield R-(+) methyl ester and unreacted S-(–) 1. A reaction yield of 40 mol% and an optical purity of 97.2% were obtained for compound 1 at a substrate concentration of 0.1 m (22 mg/ml). Lipase P-30 was immobilized on Accurel polypropylene (PP) and the immobilized enzyme was reused (23 cycles) in the esterification reaction without loss of enzyme acitivity, productivity or optical purity. Among various solvents evaluated, toluene was found to be the most suitable organic solvent and methanol was the best alcohol for the esterification of racemic 1 by immobilized lipase. Substrate concentrations as high as 1.0 m were used in the esterification reaction. When the temperature was increased from 28° C to 60° C, the reaction time required for the esterification of 0.1 m substrate decreased from 16 h to 2 h. On increasing the methanol to substrate molar ratio from 1:1 to 4:1, the rate of esterification decreased. A lipase fermentation using Pseudomonas sp. ATCC 21 808 was developed. In the batch-fermentation process, 56 units/ml of extracellular lipase activity was obtained. A fed-batch process using soybean oil gave a significant increase in the lipase activity (126 units/ml). Crude lipase recovered from the filtrate by ethanol precipitation and immobilized on Accurel PP was also effective: S-(–) compound 1 was obtained in 35 mol% yield and 95% optical purity. Offsprint requests to: R. N. Patel  相似文献   

20.
C2‐symmetric N,N‐bis(phosphinomethyl)amines were prepared by the thermal reaction of aromatic aldehydes with ammonia and hypophosphorus acid as previously described. Both enantiomers of C2‐symmetric N,N‐bis(phosphinomethyl)amine were obtained in a high enantiomeric purity through the diastereomeric salt formation with (–)‐quinine, and subsequent fractional crystallization. X‐ray crystallographic analysis of one of the diastereomeric salts clearly revealed that (–)‐quinine could be an efficient resolving agent for obtaining the single enantiomer (R,R)‐N,N‐bis(phosphinomethyl)amine. Chirality 27:71–74, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号