首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The chiral fungicide furametpyr is widely used in the rice field to control rice sheath blight; however, furametpyr enantiomers are treated as just one compound in traditional achiral analysis, which gives only partial information. An effective chiral analytical method was developed for the resolution and determination of the fungicide furametpyr enantiomers in rice, soil, and water samples. Furametpyr enantiomers were excellently separated and determined on a Chiralpak AD‐H column with n‐hexane/ethanol (90:10, v/v) as mobile phase at a flow rate of 0.8 mL min‐1 with UV detection at 220 nm. The resolution was up to 8.85. The first eluted enantiomer was (+)‐furametpyr and the second eluted one was (?)‐furametpyr. The effects of mobile‐phase composition and column temperature on the enantioseparation were evaluated. The method was validated for linearity, repeatability, accuracy, limit of detection (LOD), and limit of quantification LOQ. LOD was 2.0 µg kg‐1 in water, 0.02 mg kg‐1 in soil, and 0.07 mg kg‐1 in rice with an LOQ of 6.7 µg kg‐1 in water, 0.07 mg kg‐1 in soil, and 0.23 mg kg‐1 in rice. The average recoveries of the pesticide in all matrices ranged from 73.1 to 101.8% for all fortification levels. The precision values associated with the analytical method, expressed as relative standard deviation (RSD) values, were below 14.0% in all matrices. The methodology was successfully applied for the enantioselective analysis of furametpyr enantiomers in real samples. Chirality 25:904–909, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
A high‐performance liquid chromatography (HPLC) method was established to detect Xeljanz enantiomers in active pharmaceutical ingredients (APIs) and tablets. The separation was achieved on a Chiralpak IC column using a mobile phase of hexane‐ethanol‐diethylamine (65:35:0.1, v/v). The detection wavelength was 289 nm. The peak areas and the enantiomer concentrations in the range of 0.15–2.25 μg?mL?1 were in high linearity, with correlation coefficients higher than 0.999. The recoveries were 86.44% at the concentrations of 7.5, 18.75, and 37.5 μg?mL?1. The limit of detection (LOD) and limit of quantification (LOQ) were 0.042 and 0.14 μg?mL?1, respectively. This HPLC method is suitable for detecting the enantiomers of Xeljanz in its APIs and tablets. Chirality 27:235–238, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
A novel chiral sensing platform, employing silver nanoparticles capped with N‐acetyl‐L‐cysteine (NALC‐Ag NPs), was utilized for the discrimination of L‐tyrosine and D‐tyrosine. This nanosensor, which could be used as an optical sensing unit and chiral probe, was characterized by transmission electron microscopy (TEM) and resonance Rayleigh scattering (RRS) spectroscopy. After the proposed sensing platform interacted with L‐tyrosine and D‐tyrosine, a decreased resonance scattering signal was only obtained from L‐tyrosine. This phenomenon offered a useful assay for the selectivity and determination of L‐tyrosine with the RRS method. The linear range and detection limit of L‐tyrosine were 0.2838–20.0 µg⋅mL‐1 and 0.0860 µg⋅mL‐1, respectively. In addition, experimental factors such as acidity, interaction time, and the concentration of enantiomers were investigated with regard to the effect on enantioselective interaction. Chirality 27:194–198, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
8‐Prenylnaringenin (8PN) is a naturally occurring bioactive chiral prenylflavonoid found most commonly in the female flowers of hops (Humulus lupulus L.). A stereospecific method of analysis for 8PN in biological fluids is necessary to study the pharmacokinetic disposition of each enantiomer. A novel and simple liquid chromatographic‐electrospray ionization‐mass spectrometry (LC‐ESI‐MS) method was developed for the simultaneous determination of R‐ and S‐8PN in rat serum and urine. Carbamazepine was used as the internal standard (IS). Enantiomeric resolution of 8PN was achieved on a Chiralpak® AD‐RH column with an isocratic mobile phase consisting of 2‐propanol and 10 mM ammonium formate (pH 8.5) (40:60, v/v) and a flow rate of 0.7 mL/min. Detection was achieved using negative selective ion monitoring (SIM) of 8PN at m/z 339.15 for both enantiomers and positive SIM m/z at 237.15 for the IS. The calibration curves for urine were linear over a range of 0.01–75 µg/mL and 0.05–75 µg/mL for serum with a limit of quantification of 0.05 µg/mL in serum and 0.01 µg/mL in urine. The method was successfully validated showing that it was sensitive, reproducible, and accurate for enantiospecific quantification of 8PN in biological matrices. The assay was successfully applied to a preliminary study of 8PN enantiomers in rat. Chirality 26:419–426, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Rapid and simple isocratic high‐performance liquid chromatographic methods with UV detection were developed and validated for the direct resolution of racemic mixtures of hyoscyamine sulfate and zopiclone. The method involved the use of αl‐acid glycoprotein (AGP) as chiral stationary phase. The stereochemical separation factor (?) and the stereochemical resolution factor (Rs) obtained were 1.29 and 1.60 for hyoscyamine sulfate and 1.47 and 2.45 for zopiclone, respectively. The method was used for determination of chiral switching (eutomer) isomers: S‐hyoscyamine sulfate and eszopiclone. Several mobile phase parameters were investigated for controlling enantioselective retention and resolution on the chiral AGP column. The influence of mobile phase, concentration and type of uncharged organic modifier, ionic strength, and column temperature on enantioselectivity were studied. Calibration curves were linear in the ranges of 1–10 µg mL‐1 and 0.5–5 µg mL‐1 for S‐hyoscyamine sulfate and eszopiclone, respectively. The method is specific and sensitive, with lower limits of detection and quantifications of 0.156, 0.515 and 0.106, 0.349 for S‐hyoscyamine sulfate and eszopiclone, respectively. The method was used to identify quantitatively the enantiomers profile of the racemic mixtures of the studied drugs in their pharmaceutical preparations. Thermodynamic studies were performed to calculate the enthalpic ΔH and entropic ΔS terms. The results showed that enantiomer separation of the studied drugs were an enthalpic process. Chirality 28:49–57, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
The present work firstly described the enantioseparation and determination of flumequine enantiomers in milk, yogurt, chicken, beef, egg, and honey samples by chiral liquid chromatography‐tandem mass spectrometry. The enantioseparation was performed under reversed‐phase conditions on a Chiralpak IC column at 20°C. The effects of chiral stationary phase, mobile phase components, and column temperature on the separation of flumequine enantiomers have been studied in detail. Target compounds were extracted from six different matrices with individual extraction procedure followed by cleanup using Cleanert C18 solid phase extraction cartridge. Good linearity (R2>0.9913) was obtained over the concentration range of 0.125 to 12.5 ng g‐1 for each enantiomer in matrix‐matched standard calibration curves. The limits of detection and limits of quantification of two flumequine enantiomers were 0.015‐0.024 and 0.045‐0.063 ng g‐1, respectively. The average recoveries of the targeted compounds varied from 82.3 to 110.5%, with relative standard deviation less than 11.7%. The method was successfully applied to the determination of flumequine enantiomers in multiple food matrices, providing a reliable method for evaluating the potential risk in animal productions.  相似文献   

7.
A rapid, simple, reliable, and environment‐friendly method for the residue analysis of the enantiomers of four chiral fungicides including hexaconazole, triadimefon, tebuconazole, and penconazole in water samples was developed by dispersive liquid–liquid microextraction (DLLME) pretreatment followed by chiral high‐performance liquid chromatography (HPLC)‐DAD detection. The enantiomers were separated on a Chiralpak IC column by HPLC applying n‐hexane or petroleum ether as mobile phase and ethanol or isopropanol as modifier. The influences of mobile phase composition and temperature on the resolution were investigated and most of the enantiomers could be completely separated in 20 min under optimized conditions. The thermodynamic parameters indicated that the separation was enthalpy‐driven. The elution orders were detected by both circular dichroism detector (CD) and optical rotatory dispersion detector (ORD). Parameters affecting the DLLME performance for pretreatment of the chiral fungicides residue in water samples, such as the extraction and dispersive solvents and their volume, were studied and optimized. Under the optimum microextraction condition the enrichment factors were over 121 and the linearities were 30–1500 µg L?1 with the correlation coefficients (R2) over 0.9988 and the recoveries were between 88.7% and 103.7% at the spiking levels of 0.5, 0.25, and 0.05 mg L?1(for each enantiomer) with relative standard deviations varying from 1.38% to 6.70% (n = 6) The limits of detection (LODs) ranged from 8.5 to 29.0 µg L?1(S/N = 3). Chirality 25:567‐574, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Maltodextrin was investigated as a chiral selector in capillary electrophoresis (CE) analysis of amlodipine (AM) enantiomers. For development of a stereoselective CE method, various effective parameters on the enantioseparation were optimized. The best results were achieved on an uncoated fused silica capillary at 20 °C using phosphate buffer (100 mM, pH 4) containing 10% w/v maltodextrin (dextrose equivalent value 4–7). The UV detector was set at 214 nm and a constant voltage of 20 kV was applied. The range of quantitation was 2.5–250 µg/mL (R2 > 0.999) for both enantiomers. Intra‐ (n = 5) and interday (n = 3) relative standard deviation (RSD) values were less than 7%. The limits of quantitation and detection were 1.7 µg/mL and 0.52 µg/mL, respectively. Recoveries of R(+) and S(?) enantiomers from tablet matrix were 97.2% and 97.8%, respectively. The method was applied for the quantification of AM enantiomers in commercial tablets. Also, the enantioseparation capability of heparin was evaluated and the results showed that heparin did not have any chiral selector activity in this study. Chirality 26:394–399, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
《Chirality》2017,29(9):500-511
A direct fluorometric high‐performance liquid chromatography (HPLC) method was developed and validated for the analysis of ibuprofen enantiomers in mouse plasma (100 μl) and tissues (brain, liver, kidneys) using liquid–liquid extraction and 4‐tertbutylphenoxyacetic acid as an internal standard. Separation of enantiomers was accomplished in a Chiracel OJ‐H chiral column based on cellulose tris(4‐methylbenzoate) coated on 5 μm silica‐gel, 250 x 4.6 mm at 22 °C with a mobile phase composed of n‐hexane, 2‐propanol, and trifluoroacetic acid that were delivered in gradient elution at a flow rate of 1 ml min−1. A fluorometric detector was set at: λexcit. = 220 nm and λemis. = 290 nm. Method validation included the evaluation of the selectivity, linearity, lower limit of quantification (LLOQ), within‐run and between‐run precision and accuracy. The LLOQ for the two enantiomers was 0.125 μg ml−1 in plasma, 0.09 μg g−1 in brain, and 0.25 μg g−1 in for liver and kidney homogenates. The calibration curves showed good linearity in the ranges of each enantiomers: from 0.125 to 35 μg ml−1 for plasma, 0.09–1.44 μg g−1 for brain, and 0.25–20 μg g−1 for liver and kidney homogenates. The method was successfully applied to a pharmacokinetic study of ibuprofen enantiomers in mice treated i.v. with 10 mg kg−1 of racemate.  相似文献   

10.
In this study, R(+)‐α‐methylbenzylamine‐modified magnetic chiral sorbent was synthesized and assessed as a new enantioselective solid phase sorbent for separation of mandelic acid enantiomers from aqueous solutions. The chemical structures and magnetic properties of the new sorbent were characterized by vibrating sample magnetometry, transmission electron microscopy, Fourier transform infrared spectroscopy, and dynamic light scattering. The effects of different variables such as the initial concentration of racemic mandelic acid, dosage of sorbent, and contact time upon sorption characteristics of mandelic acid enantiomers on magnetic chiral sorbent were investigated. The sorption of mandelic acid enantiomers followed a pseudo‐second‐order reaction and equilibrium experiments were well fitted to a Langmuir isotherm model. The maximum adsorption capacity of racemic mandelic acid on to the magnetic chiral sorbent was found to be 405 mg g?1. The magnetic chiral sorbent has a greater affinity for (S)‐(+)‐mandelic acid compared to (R)‐(?)‐mandelic acid. The optimum resolution was achieved with 10 mL 30 mM of racemic mandelic acid and 110 mg of magnetic chiral sorbent. The best percent enantiomeric excess values (up to 64%) were obtained by use of a chiralpak AD‐H column. Chirality 27:835–842, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
A chemiluminescent method using flow injection (FI) was investigated for rapid and sensitive determination of enalapril maleate and atenolol, which are used in the treatment of hypertension. The method is based on the sensitizing effect of these drugs on the Ce(IV)–sulfite reaction. The different experimental parameters affecting the chemiluminescence (CL) intensity were carefully studied and incorporated into the procedure. The method permitted the determination of 0.01–3.0 µg mL?1 of enalapril maleate in bulk form with correlation coefficient r = 0.99993, lower limit of detection (LOD) 0.0025 µg mL?1 (S/N = 2) and lower limit of quantitation (LOQ) 0.01 µg mL?1. The linearity range of atenolol in bulk form was 0.01–2.0 µg mL?1 (r = 0.99989) with LOD of 0.0003 µg mL?1 (S/N = 2) and LOQ of 0.01 µg mL?1. In biological fluids the linearity range of enalapril maleate was 0.1–2.0 µg mL?1 in both urine and serum, and for atenolol the linearity range was 0.1–1.0 µg mL?1 in both urine and serum. The method was also applied to the determination of the drugs in their pharmaceutical preparations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A simple high performance liquid chromatography method HPLC‐UV for simultaneous enantiomeric determination of propranolol, metoprolol, pindolol, and atenolol in natural water samples was developed and validated, using a molecularly imprinted polymer solid‐phase extraction. To achieve this purpose, Lux® Cellulose‐1/Sepapak‐1 (cellulose tris‐(3,5‐dymethylphenylcarbamate)) (Phenomenex, Madrid, Spain) chiral stationary phase was used in gradient elution and normal phase mode at ambient temperature. The gradient elution program optimized consisted of a progressive change of the mobile phase polarity from n‐hex/EtOH/DEA 90/10/0.5 (v/v/v) to 60/40/0.5 (v/v/v) in 13 min, delivered at a flow rate of 1.3 ml/min and a sudden change of flow rate to 2.3 ml/min in 1 min. Critical steps in any molecularly imprinted polymer extraction protocol such as the flow rate to load the water sample in the cartridges and the breakthrough volume were optimized to obtain the higher extraction recoveries for all compounds. In optimal conditions (100 ml breakthrough volume loaded at 2.0 ml/min), extraction recoveries for the four pairs of β‐blockers were near 100%. The MIP‐SPE‐HPLC‐UV method developed demonstrates good linearity (R2 ≥ 0.99), precision, selectivity, and sensitivity. Method limit detection was 3.0 µg/l for propranolol and pindolol enantiomers and 20.0 and 22.0 µg/l for metoprolol and atenolol enantiomers, respectively. The proposed methodology should be suitable for routine control of these emerging pollutants in natural waters for a better understanding of the environmental impact and fate. Chirality 24:860–866, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Malathion is a widely used chiral phosphorus insecticide, which has a more toxic chiral metabolite malaoxon. In this work, the enantiomers of malathion and malaoxon were separated by high-performance liquid chromatography-mass/mass (HPLC-MS/MS) with chiral columns using acetonitrile/water or methanol/water as mobile phase, and the chromatographic conditions were optimized. Based on the chiral separation, the chiral residue analysis methods for the enantiomers in soil, fruit, and vegetables were set up. Two pairs of the enantiomers were better separated on CHIRALPAK IC chiral column, and baseline simultaneous separations of malathion and malaoxon enantiomers were achieved with acetonitrile/water (40/60, v/v) as mobile phase at a flow rate of 0.5 mL/min. The elution orders were −/+ for both malathion and malaoxon measured by an optical rotation detector. The chiral residue analysis in soil, fruit, and vegetables was validated by linearity, recovery, precision, limit of detection (LOD), and limit of quantification (LOQ). The LODs and LOQs for the enantiomers of malathion were 1 μg/kg and 3–5 μg/kg and 0.08 μg/kg and 0.20–0.25 μg/kg for malaoxon enantiomers. Good linear calibration curves for each enantiomer in the matrices were obtained within the concentration range of 0.02–12 mg/L. The mean recoveries of the enantiomers of malathion and malaoxon ranged from 82.26% to 109.04%, with RSDs of 0.71–8.63%.The results confirmed that this method was capable of simultaneously determining the residue of malathion and malaoxon in food and environmental matrix on an enantiomeric level.  相似文献   

14.
A new liquid chromatographic method has been developed for the chiral separation of the enantiomers of intermediates in the preparation of the ester side‐chain of homoharringtonine. The enantiomers were separated by a Chiralpak IC (250 × 4.6 mm, 5 µm) in normal phase high‐performance liquid chromatography (HPLC). Four compounds were baseline resolved. By comparing the chromatographs of racemates and single enantiomers of the six intermediates, the enantiomeric excess values of the single enantiomers were evaluated, and the elution orders of the enantiomers were established. Chirality 27:538–542, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
A rapid and effective RP‐UHPLC‐DAD method for enantioseparation of three flavanones, i.e., flavanone, naringenin, and hesperetin, was developed and validated. Chromatographic separation of the analytes was performed using a Chiralpak AD‐3R analytical column under reverse phase conditions with methanol as the mobile phase. The method was validated in the concentration range of 0.2 to 50 µg/mL for enantiomers of flavanone and 0.5 to 50 µg/mL for enantiomers of naringenin and hesperetin. The limits of quantification were between 0.03 to 0.5 µg/mL. Intraday and interday precision were below 14% and accuracy varied from 0.04 to 8.17%. Chirality 28:147–152, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
The chiral pesticide enantiomers often have different toxic effects and environmental behaviors, which suggests that the risk assessments should be on an enantiomeric level. In this work, the chiral separation of the napropamide enantiomers and the stereoselective degradation in tomato, cucumber, rape, cabbage, and soil were investigated. Napropamide enantiomers could be separated absolutely by high‐performance liquid chromatography (HPLC) using a Chiralpak IC column with a resolution factor of 11.75 under the optimized condition. Solid phase extraction (SPE) was used for cleanup of the enantiomers in the vegetable samples. The residue analysis method was validated. Good linearities (R2 = 0.9997) and recoveries (71.43% ‐97.64%) were obtained. The limits of detection (LOD) were 0.05 mg/kg in soil and 0.20 mg/kg in vegetables. The results of degradation showed that napropamide dissipated rapidly in vegetables with half‐lives of only 1.13–2.21 days, but much more slowly in soil, with a half‐life of 11.95 d. Slight stereoselective degradation of the two enantiomers was only observed in cabbage, with enantiomeric fraction (EF) = 0.46, and there was no enantioselectivity in the other vegetables. The degradation of napropamide in the five matrixes was fast, and there was no enantioselectivity. Chirality 28:108–113, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Samples of water, sediments and aquatic weeds were collected from 26 sites in the Nyando River catchment of the Lake Victoria basin in 2005–2006. The objective was to investigate levels of organochlorine pesticides that have either been banned or are restricted for use in Kenya. The pesticides investigated were lindane, aldrin, endosulfan, endrin, dieldrin, DDT, heptachlor and methoxychlor. These pesticides had previously found wide applications in public health and agriculture in Kenya for control of disease vectors and crop pests respectively. Results showed that mean concentrations were highest for methoxychlor (8.817 ± 0.020?µg l?1) in water, sediments (92.893 ± 3.039 µg kg?1), and weeds (39.641 ± 3.045?µg kg?1), the weeds also tended to accumulate aldrin (15.519 ± 3.756?µg kg?1). The results show that the pesticides are still in use and are detected in the catchment. Stringent management and public awareness measures are required to enforce the ban on the organochlorine pesticides in order to safeguard the environment and ecosystems of Lake Victoria.  相似文献   

18.
Two simple, rapid, sensitive and precise spectrophotometric and spectrofluorimetric methods were developed for the determination of indacaterol maleate in bulk powder and capsules. Both methods were based on the direct measurement of the drug in methanol. In the spectrophotometric merthod (Method I) the absorbance was measured at 259 nm. The absorbance‐concentration plot was rectilinear over the range 1.0–10.0 µg mL?1 with a lower detection limit (LOD) of 0.078 µg mL?1 and lower quantification limit (LOQ) of 0.238 µg mL?1. Meanwhile in the spectrofluorimetric method (Method II) the native fluorescence was measured at 358 nm after excitation at 258 nm. The fluorescence‐concentration plot was rectilinear over the range of 1.0–40.0 ng mL?1 with an LOD of 0.075 ng mL?1and an LOQ of 0.226 ng mL?1. The proposed methods were successfully applied to the determination of indacaterol maleate in capsules with average percent recoveries ± RSD% of 99.94 ± 0.96 for Method I and 99.97 ± 0.81 for Method II. In addition, the proposed methods were extended to a content uniformity test according to the United States Pharmacopoeia (USP) guidelines and were accurate, precise for the capsules studied with acceptance value 3.98 for Method I and 2.616 for Method II. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The enantioselectivities of individual enantiomers of furalaxyl in acute toxicity and bioaccumulation in the earthworm (Eisenia foetida) were studied. The acute toxicity was tested by filter paper contact test. After 48 h of exposure, the calculated LC50 values of the R‐form, rac‐form, and S‐form were 2.27, 2.08, and 1.22 µg cm‐2, respectively. After 72 h of exposure, the calculated LC50 values were 1.90, 1.54, and 1.00 µg cm‐2, respectively. Therefore, the acute toxicity of furalaxyl enantiomers was enantioselective. During the bioaccumulation experiment, the enantiomer fraction of furalaxyl in earthworm tissue was observed to deviate from 0.50 and maintained a range of 0.55–0.60; in other words, the bioaccumulation of furalaxyl was enantioselective in earthworm tissue with a preferential accumulation of S‐furalaxyl. The uptake kinetic of furalaxyl enantiomers fitted the first‐order kinetics well and the calculated kinetic parameters were consistent with the low accumulation efficiency. Chirality 26:307–312, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
In this study, the combined use of the selectivity of metal chelate affinity chromatography with the capacity of epoxy supports to immobilize poly‐His‐tagged recombinant benzoylformate decarboxylase from Pseudomonas putida (BFD, E.C. 4.1.1.7) via covalent attachment is shown. This was achieved by designing tailor‐made magnetic chelate–epoxy supports. In order to selectively adsorb and then covalently immobilize the poly‐His‐tagged BFD, the epoxy groups (300 µmol epoxy groups/g support) and a very small density of Co2+‐chelate groups (38 µmol Co2+/g support) was introduced onto magnetic supports. That is, it was possible to accomplish, in a simple manner, the purification and covalent immobilization of a histidine‐tagged recombinant BFD. The magnetically responsive biocatalyst was tested to catalyze the carboligation reactions. The benzoin condensation reactions were performed with this simple and convenient heterogeneous biocatalyst and were comparable to that of a free‐enzyme‐catalyzed reaction. The enantiomeric excess (ee) of (R)‐benzoin was obtained at 99 ± 2% for the free enzyme and 96 ± 3% for the immobilized enzyme. To test the stability of the covalently immobilized enzyme, the immobilized enzyme was reused in five reaction cycles for the formation of chiral 2‐hydroxypropiophenone (2‐HPP) from benzaldehyde and acetaldehyde, and it retained 96% of its original activity after five reaction cycles. Chirality 27:635–642, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号