首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the study was to investigate the metabolism of 4‐fluoro‐N‐(1‐{2‐[(propan‐2‐yl)phenoxy]ethyl}‐8‐azabicyclo[3.2.1]octan‐3‐yl)‐benzenesulfonamide (PZ‐1150), a novel 5‐HT7 receptor antagonist with antidepressant‐like and anxiolytic properties, by the following three ways: in vitro with microsomes; in vitro employing Cunninghamella echinulata, and in silico using MetaSite. Biotransformation of PZ‐1150 with microsomes resulted in five metabolites, while transformation with C. echinulata afforded two metabolites. In both models, the predominant metabolite occurred due to hydroxylation of benzene ring. In silico data coincide with in vitro experiments, as three MetaSite metabolites matched compounds identified in microsomal samples. In human liver microsomes PZ‐1150 exhibited in vitro half‐life of 64 min, with microsomal intrinsic clearance of 54.1 μL/min/mg and intrinsic clearance of 48.7 mL/min/kg. Therefore, PZ‐1150 is predicted to be a high‐clearance agent. The study demonstrated the applicability of using microsomal model coupled with microbial model to elucidate the metabolic pathways of compounds and comparison with in silico metabolite predictions.  相似文献   

2.
Time‐course of biotransformation of racemic trans‐4‐((E)‐4′,8′‐dimethylnona‐3′,7′‐dien‐1‐yl)‐5‐iodomethyl‐4‐methyldihydrofuran‐2‐one ( 1 ) in fungal and yeast cultures was investigated. In these conditions, the substrate 1 was enantioselectively dehalogenated yielding 4‐((E)‐4′,8′‐dimethylnona‐3′,7′‐dien‐1‐yl)‐4‐methyl‐5‐methylenedihydrofuran‐2‐one ( 2 ) and its structure was established based on the spectroscopic data. The most effective biocatalyst used was Didymosphaeria igniaria, which catalyzed the process with highest rate and enantioselectivity (ee of product = 76%). The antiproliferative activity of δ‐iodo‐γ‐lactone 1 , product of its biotransformation 2 , and starting substrate (farnesol) were evaluated toward two cancer cell lines: A549 (human lung adenocarcinoma) and HL‐60 (human promyelocytic leukemia).  相似文献   

3.
In the synthesis performed in this study, derivatives of 4‐tert‐butylcyclohexanone 1 were obtained using typical reactions of organic synthesis. The bioactivity of the selected compounds was evaluated. 1‐(Bromomethyl)‐8‐tert‐butyl‐2‐oxaspiro[4.5]decan‐3‐one ( 5 ) was characterized by attractant properties against larvae and a weak feeding deterrent activity against adults of Alphitobius diaperinus Panzer . This bromolactone was a moderate antifeedant towards Myzus persicae Sulzer . In addition, ethyl (4‐tert‐butylcyclohexylidene)acetate ( 2 ) and bromolactone 5 displayed antibacterial activity. The strongest bacteriostatic effect was observed against Gram‐positive strains: Bacillus subtilis and Staphylococcus aureus. The bromolactone 5 also limited the growth of Escherichia coli strain.  相似文献   

4.
This review gives a broad overview of the state of play with respect to the synthesis, conformational properties, and biological activity of α‐fluorinated β‐amino acids and derivatives. General methods are described for the preparation of monosubstituted α‐fluoro‐β‐amino acids (Scheme 1). Nucleophilic methods for the introduction of fluorine predominantly involve the reaction of DAST with alcohols derived from α‐amino acids, whereas electrophilic sources of fluorine such as NFSI have been used in conjunction with Arndt? Eistert homologation, conjugate addition or organocatalyzed Mannich reactions. α,α‐Difluoro‐β‐amino acids have also been prepared using DAST; however, this area of synthesis is largely dominated by the use of difluorinated Reformatsky reagents to introduce the difluoro ester functionality (Scheme 9). α‐Fluoro‐β‐amino acids and derivatives analyzed by X‐ray crystal and NMR solution techniques are found to adopt preferred conformations which are thought to result from stereoelectronic effects associated with F located close to amines, amides, and esters (Figs. 26). α‐Fluoro amide and β‐fluoro ethylamide/amine effects can influence the secondary structure of α‐fluoro‐β‐amino acid‐containing derivatives including peptides and peptidomimetics (Figs. 79). α‐Fluoro‐β‐amino acids are also components of a diverse range of bioactive anticancer (e.g., 5‐fluorouracil), antifungal, and antiinsomnia agents as well as protease inhibitors where such fluorinated analogs have shown increased potency and spectrum of activity.  相似文献   

5.
Thirteen new 3‐acetyl‐2,5‐disubstituted‐1,3,4‐oxadiazoline derivatives were synthesized from corresponding hydrazide‐hydrazones of isonicotinic acid in the reaction with acetic anhydride. The obtained compounds were identified with the use of spectral methods (IR, 1H‐NMR, 13C‐NMR, MS). In vitro antimicrobial activity screening of synthesized compounds against a panel of bacteria and fungi revealed interesting antibacterial and antifungal activity of tested 1,3,4‐oxadiazoline derivatives, which is comparable to that of commonly used antimicrobial agents.  相似文献   

6.
The antioxidant properties of two series of thiazolidinones and thiazinanones were reported. The novel six‐membered thiazinanones were synthesized from the efficient multicomponent reaction of 2‐picolylamine (2‐aminomethylpyridine), arenaldehydes, and the 3‐mercaptopropionic acid in moderate to excellent yields. These novel compounds were fully identified and characterized by NMR and GC‐MS techniques. In vitro antioxidant activities of all compounds were evaluated by 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) and 2,2′‐azinobis‐3‐ethylbenzothiazoline‐6‐sulfonic acid (ABTS) tests. The antioxidant assays of thiobarbituric acid reactive species and total thiol content levels in the cerebral cortex and liver of rats were also performed. Thiazinanone 5a showed the best radical scavenging activity in DPPH and ABTS tests, as well as reduced lipid peroxidation and increased total thiol group in biological systems. Altogether, the results may be considered a good starting point for the discovery of a new radical scavenger.  相似文献   

7.
A series of novel phenylurea containing 2‐benzoylindan‐1‐one derivatives 3a  –  3j were synthesized from the reaction of phenylurea‐substituted acetophenones 1a  –  1j with phthalaldehyde 2 under mild reaction conditions in good yields. All synthesized compounds were characterized by spectroscopic methods. The obtained compounds ( 3a  –  3j ) were evaluated for anticancer activity against HeLa and C6 cell lines. Antiproliferative activity was determined by the BrdU proliferation ELISA assay, 3f and 3g were found to be most active compounds. The compounds were also screened for antimicrobial activity and all compounds showed remarkable activity against used microorganisms.  相似文献   

8.
A new series of N‐(pyrimidin‐2‐yl)benzenesulfonamide derivatives, 3a – 3i and 4a – 4i , was synthesized from pyrimidin‐2‐amines, 2a – 2i , with the aim to explore their effects on in vitro growth of Entamoeba histolytica. The chemical structures of the compounds were elucidated by elemental analysis, FT‐IR, 1H‐ and 13C‐NMR, and ESI mass‐spectral data. In vitro anti‐amoebic activity was evaluated against HM1 : IMSS strain of Entamoeba histolytica. The IC50 values were calculated by using the double dilution method. The results were compared with the IC50 value of the standard drug ‘metronidazole’. The selected compounds were tested for their cytotoxic activities by cell‐viability assay using H9C2 cardiac myoblasts cell line, and the results indicated that all the compounds displayed remarkable >80% viabilities to a concentration of 100 μg/ml.  相似文献   

9.
Epilepsy, one of the most frequent neurological disorders, is still insufficiently treated in about 30% of patients. As a consequence, identification of novel anticonvulsant agents is an important issue in medicinal chemistry. In the present article we report synthesis, physicochemical, and pharmacological evaluation of N‐trans‐cinnamoyl derivatives of R and S‐2‐aminopropan‐1‐ol, as well as R and S‐2‐aminobutan‐1‐ol. The structures were confirmed by spectroscopy and for derivatives of 2‐aminopropan‐1‐ols the configuration was evaluated by means of crystallography. The investigated compounds were tested in rodent models of seizures: maximal electroshock (MES) and subcutaneous pentetrazol test (scPTZ), and also in a rodent model of epileptogenesis: pilocarpine‐induced status prevention. Additionally, derivatives of 2‐aminopropan‐1‐ols were tested in benzodiazepine‐resistant electrographic status epilepticus rat model as well as in vitro for inhibition of isoenzymes of cytochrome P450. All of the tested compounds showed promising anticonvulsant activity in MES. For R(–)‐(2E)‐N‐(1‐hydroxypropan‐2‐yl)‐3‐phenylprop‐2‐enamide pharmacological parameters were found as follows: ED50 = 76.7 (68.2–81.3) mg/kg (MES, mice i.p., time = 0.5 h), ED50 = 127.2 (102.1–157.9) mg/kg (scPTZ, mice i.p., time = 0.25 h), TD50 = 208.3 (151.4–230.6) mg/kg (rotarod, mice i.p., time = 0.25 h). Evaluation in pilocarpine status prevention proved that all of the reported compounds reduced spontaneous seizure activity and act as antiepileptogenic agents. Both enantiomers of 2‐aminopropan‐1‐ols did not influence cytochrome P450 isoenzymes activity in vitro and are likely not to interact with CYP substrates in vivo. Chirality 28:482–488, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
β3‐Octaarginine chains were attached to the functional groups NH and CO2H of the antibacterial fluoroquinolones ciprofloxacin (→ 1 ) and enrofloxacin (→ 2 ), respectively, in order to find out whether the activity increases by attachment of the polycationic, cell‐penetrating peptide (CPP) moiety. For comparison, simple amides, 3 – 5 , of the two antimicrobial compounds and β3‐octaarginine amide ( βR8 ) were included in the antibacterial susceptibility tests to clarify the impact of chemical modification on the microbiological activity of either scaffold (Table).  相似文献   

11.
4‐Methyl‐2‐prenylphenol ( 1 ) was synthesized from para‐cresol and prenol, natural alcohol under the conditions of heterogeneous catalysis. A series of nine new aminomethyl derivatives with secondary and tertiary amino groups were obtained on the basis of compound 1 . A comparative evaluation of their antioxidant properties was carried out using in vitro models. It was established that Mannich base with octylaminomethyl group has radical‐scavenging activity, high Fe2+‐chelation ability as well as the ability to inhibit oxidative hemolysis of red blood cells.  相似文献   

12.
Terpene derivatives converted by microbial biotransformation constitute an important resource for natural pharmaceutical, fragrance, and aroma substances. In the present study, the monoterpene α‐phellandrene was biotransformed by 16 different strains of microorganisms (bacteria, fungi, and yeasts). The transformation metabolites were initially screened by TLC and GC/MS, and then further characterized by NMR spectroscopic techniques. Among the six metabolites characterized, 6‐hydroxypiperitone, α‐phellandrene epoxide, cis‐p‐menth‐2‐en‐1‐ol, and carvotanacetone, which originated from (?)‐(R)‐α‐phellandrene, are reported for the first time in this study. Additionally, the substrate and the metabolite 5‐p‐menthene‐1,2‐diol were subjected to in vitro antibacterial and anticandidal tests. The metabolite showed moderate‐to‐good inhibitory activities (MICs=0.125 to >4 mg/ml) against various bacteria and especially against Candida species in comparison with its substrate (?)‐(R)‐α‐phellandrene and standard antimicrobial agents.  相似文献   

13.
A series of novel α‐(diphenylphosphoryl)‐ and α‐(diphenylphosphorothioyl)cycloalkanone oximes have been synthesized in search for novel bioactive molecules. Their structures were characterized by various spectroscopic methods including IR, NMR (1H, 31P, 13C), mass spectrometry and single crystal X‐ray diffraction. The newly synthesized phosphorus‐containing oximes were screened for their in vitro antimicrobial activity against Gram‐positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram‐negative bacteria (Escherichia coli and Salmonella typhimurium) and fungal strains (Candida albicans and Candida glabrata). The biological assays showed that all the studied compounds exhibited high antibacterial and antifungal activities at only 0.1–2.1 μg/mL. In silico molecular docking studies in FabH enzyme active site were performed in order to predict the possible interaction modes and binding energies of the drug candidates at the molecular level.  相似文献   

14.
Forty‐three 2‐[(benzotriazol‐1/2‐yl)methyl]benzimidazoles, bearing either linear (dialkylamino)alkyl‐ or bulkier (quinolizidin‐1‐yl)alkyl moieties at position 1, were evaluated in cell‐based assays for cytotoxicity and antiviral activity against viruses representative of two of the three genera of the Flaviviridae family, i.e. Flaviviruses (Yellow Fever Virus (YFV)) and Pestiviruses (Bovine Viral Diarrhoea Virus (BVDV)), as Hepaciviruses can hardly be used in routine cell‐based assays. Compounds were also tested against representatives of other virus families. Among ssRNA+ viruses were a retrovirus (Human Immunodeficiency Virus type 1 (HIV‐1)), two picornaviruses (Coxsackie Virus type B2 (CVB2), and Poliovirus type‐1, Sabin strain (Sb‐1)); among ssRNA? viruses were a Paramyxoviridae (Respiratory Syncytial Virus (RSV)) and a Rhabdoviridae (Vesicular Stomatitis Virus (VSV)) representative. Among double‐stranded RNA (dsRNA) viruses was a Reoviridae representative (Reo‐1). Two representatives of DNA virus families were also included: Herpes Simplex type 1, (HSV‐1; Herpesviridae) and Vaccinia Virus (VV; Poxviridae). Most compounds exhibited potent activity against RSV, with EC50 values as low as 20 nM . Moreover, some compounds, in particular when bearing a (quinolizidin‐1‐yl)alkyl residue, were also moderately active against BVDV, YFV, and CVB2.  相似文献   

15.
A series of 3‐(substituted aroyl)‐4‐(3,4,5‐trimethoxyphenyl)‐1H‐pyrrole derivatives were synthesized and determined for their anticancer activity against eleven cancer cell lines and two normal tissue cell lines using MTT assay. Among the synthesized compounds, compound 3f was the most potent compound against A375, CT‐26, HeLa, MGC80‐3, NCI‐H460 and SGC‐7901 cells (IC50 = 8.2 – 31.7 μm ); 3g , 3n and 3a were the most potent compounds against CHO (IC50 = 8.2 μm ), HCT‐15 (IC50 = 21 μm ) and MCF‐7 cells (IC50 = 18.7 μm ), respectively. Importantly, all the target compounds showed no cytotoxicity towards the normal tissue cell (IC50 > 100 μm ). Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents.  相似文献   

16.
In order to find novel antitumor candidate agents with high efficiency and low toxicity, 14 novel substituted 5‐anilino‐α‐glucofuranose derivatives have been designed, synthesized and evaluated for antiproliferative activities in vitro. Their structures were characterized by NMR (1H and 13C) and HR‐MS, and configuration (R/S) at C(5) was identified by two‐dimensional 1H,1H‐NOESY‐NMR spectrum. Their antiproliferative activities against human tumor cells were investigated by MTT assay. The results demonstrated that most of the synthesized compounds had antiproliferative effects comparable to the reference drugs gefitinib and lapatinib. In particular, (5R)‐5‐O‐(3‐chloro‐4‐{[5‐(4‐fluorophenyl)thiophen‐2‐yl]methyl}anilino)‐5‐deoxy‐1,2‐O‐(1‐methylethylidene)‐α‐glucofuranose ( 9da ) showed the most potent antiproliferative effects against SW480, A431 and A549 cells, with IC50 values of 8.57, 5.15 and 15.24 μm , respectively. This work suggested 5‐anilino‐α‐glucofuranose as an antitumor core structure that may open a new way to develop more potent anti‐cancer agents.  相似文献   

17.
Herein, we contribute to the development of environmentally friendly antifoulants by synthesizing eighteen isocyanides derived from α,α‐disubstituted amino acids and evaluating their antifouling activity/toxicity against the cypris larvae of the Balanus amphitrite barnacle. Almost all isocyanides showed good antifouling activity without significant toxicity and exhibited EC50 values of 0.07 – 7.30 μg/mL after 120‐h exposure. The lowest EC50 values were observed for valine‐, methionine‐, and phenylalanine‐derived isocyanides, which achieved > 95% cypris larvae settlement inhibition at concentrations of less than 30 μg/mL without exhibiting significant toxicity. Thus, the prepared isocyanides should be useful for further research focused on the development of environmentally friendly antifouling agents.  相似文献   

18.
5α‐Androst‐16‐en‐3α‐ol (α‐androstenol) is an important contributor to human axilla sweat odor. It is assumed that α‐andostenol is excreted from the apocrine glands via a H2O‐soluble conjugate, and this precursor was formally characterized in this study for the first time in human sweat. The possible H2O‐soluble precursors, sulfate and glucuronide derivatives, were synthesized as analytical standards, i.e., α‐androstenol, β‐androstenol sulfates, 5α‐androsta‐5,16‐dien‐3β‐ol (β‐androstadienol) sulfate, α‐androstenol β‐glucuronide, α‐androstenol α‐glucuronide, β‐androstadienol β‐glucuronide, and α‐androstenol β‐glucuronide furanose. The occurrence of α‐androstenol β‐glucuronide was established by ultra performance liquid chromatography (UPLC)/MS (heated electrospray ionization (HESI)) in negative‐ion mode in pooled human sweat, containing eccrine and apocrine secretions and collected from 25 female and 24 male underarms. Its concentration was of 79 ng/ml in female secretions and 241 ng/ml in male secretions. The release of α‐androstenol was observed after incubation of the sterile human sweat or α‐androstenol β‐glucuronide with a commercial glucuronidase enzyme, the urine‐isolated bacteria Streptococcus agalactiae, and the skin bacteria Staphylococcus warneri DSM 20316, Staphylococcus haemolyticus DSM 20263, and Propionibacterium acnes ATCC 6919, reported to have β‐glucuronidase activities. We demonstrated that if α‐ and β‐androstenols and androstadienol sulfates were present in human sweat, their concentrations would be too low to be considered as potential precursors of malodors; therefore, the H2O‐soluble precursor of α‐androstenol in apocrine secretion should be a β‐glucuronide.  相似文献   

19.
The potential to inhibit α‐ and β‐glucosidases of a series of chiral piperazine‐2,5‐dione derivatives was investigated. Three of the seven compounds tested, viz., 1, 5b , and 5c , showed to be non competitive inhibitors of α‐glucosidase, whereas they exhibited very low inhibitory activity towards β‐glucosidase. The most active compound, 5c (KI of α‐glucosidase=5 μm), had a 100‐fold α‐glucosidase/β‐glucosidase inhibitor selectivity.  相似文献   

20.
7α‐Hydroxyfrullanolide ( 1 ), a known sesquiterpenoid, was isolated from Sphaeranthus indicus using an antibacterial‐activity‐directed fractionation method. This compound had exhibited a significant antibacterial activity against Gram‐positive bacteria. Chemical and microbial reactions were performed to prepare eight different analogues of compound 1 in order to evaluate these newly synthesized compounds for antibacterial activity. These compounds were 1β,7α‐dihydroxyfrullanolide ( 2 ), 7α‐hydroxy‐1‐oxofrullanolide ( 3 ), 4,5‐dihydro‐7α‐hydroxyfrullanolide ( 4 ), 11,13‐dihydro‐7α‐hydroxyfrullanolide ( 5 ), 13‐acetyl‐7α‐hydroxyfrullanolide ( 6 ), 2α,7α‐dihydroxysphaerantholide ( 7 ), 4α,5α‐epoxy‐7α‐hydroxyfrullanolide ( 8 ), and 4β,5β‐epoxy‐7α‐hydroxyfrullanolide ( 9 ). Microbial reactions on 1 using whole‐cell cultures of Cunninghamella echinulata and Curvularia lunata yielded compounds 2 – 4 . Incubation of compound 1 with the liquid cultures of Apsergillus niger and Rhizopus circinans yielded metabolites 5 – 7 , while 8 and 9 were prepared by carrying out an epoxidation reaction on 1 using meta‐chloroperbenzoic acid (mCPBA). Structures of compounds 2 – 9 were elucidated with the aid of extensive NMR spectral studies. Compounds 2 – 4 were found to be new metabolites. Compounds 1 – 9 were evaluated for antibacterial activity and found to exhibit a wide range of bioactivities. Antibacterial‐activity data of 1 – 9 suggested that the bioactivity of 1 is largely due to the presence of C(4)?C(5), C(11)?C(13), and a γ‐lactone moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号