首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flurbiprofen is a kind of nonsteroidal anti‐inflammatory drug, which has been widely used in clinic for treatment of rheumatoid arthritis and osteoarthritis. It has been reported that S‐flurbiprofen shows good performance on clinic anti‐inflammatory treatment, while R‐enantiomer almost has no pharmacological activities. It has important practical values to obtain optically pure S‐flurbiprofen. In this work, chiral ionic liquids, which have good structural designability and chiral recognize ability, were selected as the extraction selector by the assistance of quantum chemistry calculations. The distribution behaviors of flurbiprofen enantiomers were investigated in the extraction system, which was composed of organic solvent and aqueous phase containing chiral ionic liquid. The results show that maximum enantioselectivity up to 1.20 was attained at pH 2.0, 25°C using 1,2‐dichloroethane as organic solvent, 1‐butyl‐3‐methylimidazole L‐tryptophan ([Bmim][L‐trp]) as chiral selector. The racemic flurbiprofen initial concentration was 0.2 mmol L?1, and [Bmim][L‐trp] concentration was 0.02 mol L?1. Furthermore, the recycle of chiral ionic liquids has been achieved by reverse extraction process of the aqueous phase with chiral selector, which is significant for industrial application of chiral ionic liquids and scale‐up of the extraction process.  相似文献   

2.
Chiral ionic liquids (ILs) have drawn more and more attention in separation science; however, only a few papers focused on the application of chiral ILs as chiral ligands in LE‐CE. In this article, a novel amino acid ionic liquid (AAIL), tetramethylammonium L‐hydroxyproline ([TMA][L‐OH‐Pro]), was first applied as a chiral ligand to evaluate its enantioselectivity towards several aromatic amino acids in ligand‐exchange capillary electrophoresis (LE‐CE) and ligand‐exchange micellar electrokinetic capillary chromatography (LE‐MEKC). In the LE‐CE system, excellent separations were achieved for tryptophan (Rs = 3.03) and 3, 4‐dihydroxyphenylalanine (DOPA) (Rs = 4.35). Several parameters affecting the enantioseparation were systematically investigated, including AAIL concentration, type and concentration of central metal ion, buffer pH, as well as applied voltage. The optimum separation was obtained with 60 mM AAIL containing 30 mM Cu (II) at pH 4.5. Additionally, an LE‐MEKC system was established to further study the enantioselectivity of [TMA][L‐OH‐Pro] towards selected analytes. As observed, the separations of the enantiomers of tryptophan, phenylalanine, and histidine were all improved compared to the LE‐CE system. The results indicated that the application of AAILs as chiral ligands is a promising method in chiral separation science. Chirality 27:58–63, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
《Chirality》2017,29(11):708-715
A liquid–liquid extraction resolution of 4‐chloro‐mandelic acid (4‐ClMA) was studied by using 2‐chloro‐N‐carbobenzyloxy‐L‐amino acid (2‐Cl‐Z‐AA) as a chiral extractant. Important factors affecting the extraction efficiency were investigated, including the type of chiral extractant, pH value of aqueous phase, initial concentration of chiral extractant in organic phase, initial concentration of 4‐ClMA in aqueous phase, and resolution temperature. It was observed that the concentration of (R)‐4‐ClMA was much higher than that of (S)‐4‐ClMA in organic phase due to a higher stability of the complex formed between (R)‐4‐ClMA and 2‐Cl‐Z‐AA. A separation factor (α) of 3.05 was obtained at 0.02 mol/L 2‐Cl‐Z‐Valine dissolved in dichloromethane, pH of 2.0, concentration of 4‐ClMA of 0.11 mmol/Land T of 296.7K.  相似文献   

4.
The enantioselective photolysis of a cold gas‐phase noncovalent complex of tryptophan with alkali‐metalized L‐serine, M+(L‐Ser)(Trp) (M = Na and Li), was examined using a tandem mass spectrometer containing a variable‐temperature ion trap. CO2 loss from Trp in the clusters was enantiomerically selective in ultraviolet excitation with linearly polarized light. M+(L‐Ser) promoted the enantioselective photolysis of Trp as a chiral auxiliary. The enantioselective photolysis of the D‐enantiomer was applied to a quantitative chiral analysis, in which the optical purity of tryptophan could be determined by measuring the relative abundance ratio R of the enantioselective CO2 loss to the chiral‐independent evaporation of L‐Ser in a single photodissociation mass spectrum of M+(L‐Ser)(Trp). Chirality 27:349–352, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
Chiral ionic liquids (CILs) with amino acids as cations have been applied as novel chiral ligands coordinated with Cu2+ to separate tryptophan enantiomers in ligand exchange chromatography. Four kinds of amino acid ionic liquids, including [L‐Pro][CF3COO], [L‐Pro][NO3], [L‐Pro]2[SO4], and [L‐Phe][CF3COO] were successfully synthesized and used for separation of tryptophan enantiomers. To optimize the separation conditions, [L‐Pro][CF3COO] was selected as the model ligand. Some factors influencing the efficiency of chiral separation, such as copper ion concentration, CILs concentration, methanol ratio (methanol/H2O, v/v), and pH, were investigated. The obtained optimal separation conditions were as follows: 8.0 mmol/L Cu(OAc)2, 4.0 mmol/L [L‐Pro][CF3COO] ,and 20% (v/v) methanol at pH 3.6. Under the optimum conditions, acceptable enantioseparation of tryptophan enantiomers could be observed with a resolution of 1.89. The results demonstrate the good applicability of CILs with amino acids as cations for chiral separation. Furthermore, a comparative study was also conducted for exploring the mechanism of the CILs as new ligands in ligand exchange chromatography. Chirality 26:160–165, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
In this study, electromembrane extraction (EME) combined with cyclodextrin (CD)‐modified capillary electrophoresis (CE) was applied for the extraction, separation, and quantification of propranolol (PRO) enantiomers from biological samples. The PRO enantiomers were extracted from aqueous donor solutions, through a supported liquid membrane (SLM) consisting of 2‐nitrophenyl octyl ether (NPOE) impregnated on the wall of the hollow fiber, and into a 20‐μL acidic aqueous acceptor solution into the lumen of hollow fiber. Important parameters affecting EME efficiency such as extraction voltage, extraction time, pH of the donor and acceptor solutions were optimized using a Box‐Behnken design (BBD). Then, under these optimized conditions, the acceptor solution was analyzed using an optimized CD‐modified CE. Several types of CD were evaluated and best results were obtained using a fused‐silica capillary with ammonium acetate (80 mM, pH 2.5) containing 8 mM hydroxypropyl‐β‐CD as a chiral selector, applied voltage of 18 kV, and temperature of 20°C. The relative recoveries were obtained in the range of 78–95%. Finally, the performance of the present method was evaluated for the extraction and determination of PRO enantiomers in real biological samples. Chirality 26:260–267, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Xiong Liu  Yu Ma  Longqi Xu  Qi Liu 《Chirality》2019,31(9):750-758
(S,S)‐DIOP, a common catalyst used in asymmetric reaction, was adopted as chiral extractant to separate 3‐chloro‐phenylglycine enantiomers in liquid‐liquid extraction. The factors affecting extraction efficiency were studied, including metal precursors, organic solvents, extraction temperature, chiral extractant concentration, and pH of aqueous phase. (S,S)‐DIOP‐Pd exhibited good ability to recognize 3‐chloro‐phenylglycine enantiomers, and the operational enantioselectivity (α) is 1.836. The highest performance factor (pf) was obtained under the condition of extraction temperature of 9.1°C, (S,S)‐DIOP‐Pd concentration of 1.7 mmol/L, and pH of aqueous phase of 7.0. In addition, the possible recognition mechanism of (S,S)‐DIOP‐Pd towards 3‐chloro‐phenylglycine enantiomers was discussed.  相似文献   

8.
The enantiomeric separation ability of the newly prepared chiral stationary phases containing acridino‐18‐crown‐6 ether selectors was studied by high‐performance liquid chromatography (HPLC). The chiral stationary phases separated the enantiomers of selected protonated primary aralkylamines efficiently. The best results were found for the separation of the mixtures of enantiomers of NO2‐PEA. Chirality 26:651–654, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
An environmental and sensitive sample pretreatment method was established and combined with high‐performance liquid chromatography (HPLC) for the analysis of tetracycline hydrochloride (TC) in feed water and lake water. One element small molecule alcohol‐salt aqueous two‐phase system (ATPS) cannot effectively adjust the polarity of the system, but binary small molecule alcohol‐salt ATPS can adjust the polarity and improve the extraction efficiency of antibiotics. In this work, a binary ATPS based on ethanol +2‐propanol + (NH4)2SO4 system was formed and applied to the separation and purification of TC in real water samples. The influence factors on partition behaviors of TC were discussed, including the types and the concentration of phase salts, the volume ratio of alcohol, the pH value, extraction temperature, and the standing time. The response surface methodology was used to determine the best experimental conditions for multi‐factor experiments. Under this optimal condition, the extraction efficiency of TC reached 95.7%. This new method is considered to have significant application in the divorce of antibiotics.  相似文献   

10.
The enantiomeric separation of eight pesticides including bitertanol ( 1 ), diclobutrazol ( 2 ), fenbuconazole ( 3 ), triticonazole ( 4 ), imazalil ( 5 ), triapenthenol ( 6 ), ancymidol ( 7 ), and carfentrazone‐ethyl ( 8 ) was achieved, using normal‐phase high‐performance liquid chromatography on two cellulosed‐based chiral columns. The effects of isopropanol composition from 2% to 30% in the mobile phase and column temperature from 5 to 40 °C were investigated. Satisfactory resolutions were obtained for bitertanol ( 1 ), triticonazole ( 4 ), imazalil ( 5 ) with the (+)‐enantiomer eluted first and fenbuconazole ( 3 ) with the (—)‐enantiomer eluted first on Lux Cellulose‐2 and Lux Cellulose‐3. (+)‐Enantiomers of diclobutrazol ( 2 ) and triapenthenol ( 6 ) were first eluted on Lux Cellulose‐2. (—)‐Carfentrazone‐ethyl ( 8 ) were eluted first on Lux Cellulose‐2 and Lux Cellulose‐3 with incomplete separation. Reversed elution orders were obtained for ancymidol (7). (+)‐Ancymidol was first eluted on Lux Cellulose‐2 while on Lux Cellulose‐3 (—)‐ancymidol was first eluted. The results of the elution order at different column temperatures suggested that column temperature did not affect the optical signals of the enantiomers. These results will be helpful to prepare and analyze individual enantiomers of chiral pesticides. Chirality 27:32–38, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
In chiral separation, enantioseparation factor is an important parameter which influences the resolution of enantiomers. In this current overview, a biphasic chiral recognition method is introduced to the readers. This method can significantly improve the enantioseparation factor in two‐phase solvent through adding lipophilic and hydrophilic chiral selectors which have opposite chiral recognition ability to organic and aqueous phases, respectively. This overview presents the development and applications of biphasic chiral recognition in liquid‐liquid extraction and counter current chromatography. It mainly focuses on the topics of mechanism, advantages and limitations, applications, and key factors of biphasic chiral recognition. In addition, the future outlook on development of biphasic chiral recognition also has been discussed in this overview.  相似文献   

12.
In this study, R(+)‐α‐methylbenzylamine‐modified magnetic chiral sorbent was synthesized and assessed as a new enantioselective solid phase sorbent for separation of mandelic acid enantiomers from aqueous solutions. The chemical structures and magnetic properties of the new sorbent were characterized by vibrating sample magnetometry, transmission electron microscopy, Fourier transform infrared spectroscopy, and dynamic light scattering. The effects of different variables such as the initial concentration of racemic mandelic acid, dosage of sorbent, and contact time upon sorption characteristics of mandelic acid enantiomers on magnetic chiral sorbent were investigated. The sorption of mandelic acid enantiomers followed a pseudo‐second‐order reaction and equilibrium experiments were well fitted to a Langmuir isotherm model. The maximum adsorption capacity of racemic mandelic acid on to the magnetic chiral sorbent was found to be 405 mg g?1. The magnetic chiral sorbent has a greater affinity for (S)‐(+)‐mandelic acid compared to (R)‐(?)‐mandelic acid. The optimum resolution was achieved with 10 mL 30 mM of racemic mandelic acid and 110 mg of magnetic chiral sorbent. The best percent enantiomeric excess values (up to 64%) were obtained by use of a chiralpak AD‐H column. Chirality 27:835–842, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Readily available L‐tartaric acid, which is a bidentate ligand with two chiral centers forming a seven‐membered chelate ring, was applied to the chiral ligand for the chiral nuclear magnetic resonance (NMR) shift reagent of samarium(III) formed in situ. This simple method does not cause serious signal broadening in the high magnetic field. Enantiomeric 13C and 1H NMR signals and enantiotopic 1H NMR signals of α‐amino acids were successfully resolved at pH 8.0 and the 1:3 molar ratio of Sm(NO3)3:L‐tartaric acid. It is elucidated that the enantiomeric signal resolution is attributed to the anisotropic magnetic environment for the enantiomers induced by the chiral L‐tartarato samarium(III) complex rather than differences in stability of the diastereomeric substrate adducts. The present 13C NMR signal resolution was also effective for the practical simultaneous analysis of plural kinds of DL‐amino acids. Chirality 27:353–357, 2015.© 2015 Wiley Periodicals, Inc.  相似文献   

14.
The enantioselective liquid–liquid extraction of 4‐nitro‐D,L‐phenylalanine (D,L‐Nphy) using PdCl2{(s)‐BINAP} as extractant in dichloroethane was studied experimentally in a countercurrent cascade of 10 centrifugal contactor separators (CCSs) at 5°C, involving flow ratio, extractant concentration, and Cl? concentration. The steady‐state enantiomeric excess (ee) in both stream exits was 90.86% at a 93.29% yield. The predicted value was modeled using an equilibrium stage approach. The correlation between model and experiment was satisfactory. The model was applied to optimize the production of both enantiomers in >97% ee and >99% ee. 14 stages and 16 stages are required for 97% ee and 99% ee for both enantiomers, respectively. Chirality 27:75–81, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
This study presents the chiral resolution of flurbiprofen enantiomers by preparative liquid chromatography using the simulated moving bed (SMB) technology. Flurbiprofen enantiomers are widely used as nonsteroidal anti‐inflammatory drugs, and although demonstrate different therapeutic actions, they are still marketed as a racemic mixture. The results presented here clearly show the importance of the selection of the proper solvent composition for the preparative separation of flurbiprofen enantiomers. Chiral SMB separation is carried out using a laboratory‐scale unit (the FlexSMB‐LSRE®) with six columns, packed with the Chiralpak AD® stationary phase (20 μm). Results presented include the experimental measurement of equilibrium and kinetic data for two very different solvent compositions, a traditional high hydrocarbon content [10%ethanol/90%n‐hexane/0.01% trifluoroacetic acid (TFA)] and a strong polar organic composition (100%ethanol/0.01%TFA). Experimental data, obtained using the two mobile phase compositions, are used to predict and optimize the SMB operation. After selecting 10%ethanol/90%n‐hexane/0.01%TFA as the most appropriate solvent composition, three feed concentrations of racemic flurbiprofen were considered. Using 40 g/l of racemic flurbiprofen feed solution, the purities for both outlet streams were above 99.4%, the productivity was 13.1 gfeed/(Lbed h), and a solvent consumption of 0.41 Lsolvent/gfeed was achieved. Chirality, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

16.
A chiral ligand‐exchange high‐performance liquid chromatography method was developed for the enantioseparation of ofloxacin and its six related substances termed impurities A, B, C, D, E, and F. The separation was performed on a conventional C18 column. Different organic modifiers, copper salts, amino acids, the ratio of Cu2+ to amino acid, pH of aqueous phase, and column temperature were optimized. The optimal mobile phase conditions were methanol‐water systems consisting of 5 mmol/L copper sulfate and 10 mmol/L L‐isoleucine (L‐Ile). Under such conditions, good enantioseparation of ofloxacin and impurities A, C, E, and F could be observed with resolutions (RS) of 3.54, 1.97, 3.21, 3.50, and 2.12, respectively. On the relationship between the thermodynamic parameters and structures of analytes, the mechanism of chiral recognition was investigated. It was concluded that ofloxacin and impurities A, C, E, and F were all enthalpically driven enantioseparation and that low column temperature was beneficial to enantioseparation. Furthermore, the structure–separation relationship of these analytes is also discussed. Chirality 27:843–849, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Much attention has been paid to chiral ionic liquids (ILs) in analytical chemistry, especially its application in capillary electrophoresis (CE) enantioseparation. However, the investigation of chiral ionic liquids synergistic systems based on antibiotic chiral selectors has been reported in only one article. In this work, a novel chiral ionic liquid, tetramethylammonium‐L‐hydroxyproline (TMA‐L‐Hyp), was applied for the first time in CE chiral separation to evaluate its potential synergistic effect with clindamycin phosphate (CP) as the chiral selector. As observed, significantly improved separation was obtained in this TMA‐L‐Hyp/CP synergistic system compared to TMA‐L‐Hyp or a CP single system. Several primary factors that might influence the separation were investigated, including CP concentration, TMA‐L‐Hyp concentration, buffer pH, types and concentrations of organic modifier, applied voltage, and capillary temperature. The best results were obtained with a 40 mM borax buffer (pH 7.6) containing 30 mM TMA‐L‐Hyp, 80 mM CP, and 20% (v/v) methanol, while the applied voltage and temperature were set at 20 kV and 20°C, respectively. Chirality 27:598–604, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
The contamination of drug residues, including chiral ones, is not acceptable in earth's ecosystem. The dynamicity of enantiomers of thalidomide and its derivatives (3‐methyl thalidomide, 3‐ethyl thalidomide, and 3‐butyl thalidomide) was ascertained at supramolecular level in water‐sediment system using solid phase extraction (SPE) and stereoselective HPLC. Enantiomeric separation of these drugs was carried out on Ceramosphere RU‐2 (25 cm × 0.46 cm, particle size 50 μm) chiral column using pure ethanol (1.0 ml/min) as eluent at 230 nm detection. Retention times, capacity, separation, and resolution factors of the enantiomers of these drugs were in the range of 20.0–36.0, 2.08–3.93, 1.35–1.57, and 1.0–2.0 min, respectively. Percentage recoveries of the enantiomers in SPE were in the range of 90.0 to 95.0 in water‐sediment system. Langmuir and Freundlich model were best fitted for dynamic equilibrium concentrations at different experimental parameters. Thalidomide and its derivatives follow first‐order kinetics at dynamic equilibrium. The rate constants of chiral interconversions were 0.390 and 0.385 days?1 for S‐ and R‐enantiomers, respectively. The uptake of thalidomide by sediment is quite good and of endothermic nature indicating good self‐purification capacity of the nature for such toxic species. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Multistage enantioselective liquid–liquid extraction (ELLE) of 2‐phenylpropionic acid (2‐PPA) enantiomers using hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) as extractant was studied experimentally in a counter‐current cascade of centrifugal contactor separators (CCSs). Performance of the process was evaluated by purity (enantiomeric excess, ee) and yield (Y). A multistage equilibrium model was established on the basis of single‐stage model for chiral extraction of 2‐PPA enantiomers and the law of mass conservation. A series of experiments on the extract phase/washing phase ratio (W/O ratio), extractant concentration, the pH value of aqueous phase, and the number of stages was conducted to verify the multistage equilibrium model. It was found that model predictions were in good agreement with the experimental results. The model was applied to predict and optimize the symmetrical separation of 2‐PPA enantiomers. The optimal conditions for symmetric separation involves a W/O ratio of 0.6, pH of 2.5, and HP‐β‐CD concentration of 0.1 mol L?1 at a temperature of 278 K, where eeeq (equal enantiomeric excess) can reach up to 37% and Yeq (equal yield) to 69%. By simulation and optimization, the minimum number of stages was evaluated at 98 and 106 for eeeq > 95% and eeeq > 97%. Chirality 28:235–244, 2016. © 2016 Wiley Periodicals, Inc. Research highlights are as follows:
    相似文献   

20.
The separation methods of the enantiomers of two β‐blockers and tryptophan were studied using capillary electrochromatography with heparin covalently as well as non‐covalently, bonded onto the capillary inner wall as stationary phase and electrokinetic chromatography with heparin as pseudostationary phase. In the case of heparin, used as a stationary phase, the method was unable to resolve enantiomers in both cases β‐blockers and tryptophan. On the other hand, when heparin was used as a pseudostationary phase, the resolution of the enantiomers was obtained only with 3‐aminopropyltriethoxysilane which were immobilised onto the inner phase of the capillary. The results of this study let us infer that the electrostatic, hydrophobic, and steric interactions were involved in the separation mechanisms. The separation was achieved in less than 10 minutes under the optimized conditions: 30 mM phosphate buffer (pH 2.5) with the adding of 15 mg/mL of heparin at 15°C and 10 kV. The usefulness of heparin as a chiral selector both in electrokinetic chromatography using 3‐aminopropyltriethoxysilane attached to the capillary was demonstrated for the first time. The developed method was powerful, sensitive, and fast, and it could be considered an important alternative to conventional methods used for chiral separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号