首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vinclozolin is a chiral fungicide with potential environmental problems. The chiral separation of the enantiomers and enantioselective degradation in soil were investigated in this work. The enantiomers were separated by high‐performance liquid chromatography (HPLC) on Chiralpak IA, IB, and AZ‐H chiral columns under normal phase and the influence of the mobile phase composition on the separation was also studied. Complete resolutions were obtained on all three chiral columns under optimized conditions with the same elution order of (+)/(?). The residual analysis of the enantiomers in soil was conducted using accelerate solvent extraction followed by HPLC determination. The recoveries of the enantiomers ranged from 85.7–105.7% with relative standard deviation (SD) of 0.12–3.83%, and the limit of detection (LOD) of the method was 0.013 µg/g. The results showed that the degradations of vinclozolin enantiomers in the soils followed first‐order kinetics. Preferential degradation of the (?)‐enantiomer was observed only in one soil with the largest |ES| value of 0.047, and no obvious enantioselective degradation was observed in other soils. It was found that the persistence of vinclozolin in soil was related to pH values based on the half‐lives. The two enantiomers disappeared about 8 times faster in basic soils than that in neutral or acidic soils. Chirality 26:155–159, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
A novel method for chiral separation of flurbiprofen enantiomers was developed using aqueous two‐phase extraction (ATPE) coupled with biphasic recognition chiral extraction (BRCE). An aqueous two‐phase system (ATPS) was used as an extracting solvent which was composed of ethanol (35.0% w/w) and ammonium sulfate (18.0% w/w). The chiral selectors in ATPS for BRCE consideration were L‐dioctyl tartrate and L‐tryptophan, which were screened from amino acids, β‐cyclodextrin derivatives, and L‐tartrate esters. Factors such as the amounts of L‐dioctyl tartrate and L‐tryptophan, pH, flurbiprofen concentration, and the operation temperature were investigated in terms of chiral separation of flurbiprofen enantiomers. The optimum conditions were as follows: L‐dioctyl tartrate, 80 mg; L‐tryptophan, 40 mg; pH, 4.0; flurbiprofen concentration, 0.10 mmol/L; and temperature, 25 °C. The maximum separation factor α for flurbiprofen enantiomers could reach 2.34. The mechanism of chiral separation of flurbiprofen enantiomers is discussed and studied. The results showed that synergistic extraction has been established by L‐dioctyl tartrate and L‐tryptophan, which enantioselectively recognized R‐ and S‐enantiomers in top and bottom phases, respectively. Compared to conventional liquid–liquid extraction, ATPE coupled with BRCE possessed higher separation efficiency and enantioselectivity without the use of any other organic solvents. The proposed method is a potential and powerful alternative to conventional extraction for separation of various enantiomers. Chirality 27:650–657, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Solid phase extraction ( SPE)‐chiral separation of the important drugs pheniramine, oxybutynin, cetirizine, and brinzolamide was achieved on the C18 cartridge and AmyCoat (150 x 46 mm) and Chiralpak AD (25 cm x 0.46 cm id) chiral columns in human plasma. Pheniramine, oxybutynin, cetirizine, and brinzolamide were resolved using n‐hexane‐2‐PrOH‐DEA (85:15:0.1, v/v), n‐hexane‐2‐PrOH‐DEA (80:20:0.1, v/v), n‐hexane‐2‐PrOH‐DEA (70:30:0.2, v/v), and n‐hexane‐2‐propanol (90:10, v/v) as mobile phases. The separation was carried out at 25 ± 1 ºC temperature with detection at 225 nm for cetirizine and oxybutynin and 220 nm for pheniramine and brinzolamide. The flow rates of the mobile phases were 0.5 mLmin‐1. The retention factors of pheniramine, oxybutynin, cetirizine and brinzolamide were 3.25 and 4.34, 4.76 and 5.64, 6.10 and 6.60, and 1.64 and 2.01, respectively. The separation factors of these drugs were 1.33, 1.18, 1.09 and 1.20 while their resolutions factors were 1.09, 1.45, 1.63 and 1.25, and 1.15, respectively. The absolute configurations of the eluted enantiomers of the reported drugs were determined by simulation studies. It was observed that the order of enantiomers elution of the reported drugs was S‐pheniramine > R‐pheniramine; R‐oxybutynin > S‐oxybutynin; S‐cetirizine > R‐cetirizine; and S‐brinzolamide > R‐brinzolamide. The mechanism of separation was also determined at the supramolecular level by considering interactions and modeling results. The reported SPE‐chiral high‐performance liquid chromatography ( HPLC) methods are suitable for the enantiomeric analyses of these drugs in any biological sample. In addition, simulation studies may be used to determine the absolute configuration of the first and second eluted enantiomers. Chirality 26:136–143, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
The enantiomeric separation of eight pesticides including bitertanol ( 1 ), diclobutrazol ( 2 ), fenbuconazole ( 3 ), triticonazole ( 4 ), imazalil ( 5 ), triapenthenol ( 6 ), ancymidol ( 7 ), and carfentrazone‐ethyl ( 8 ) was achieved, using normal‐phase high‐performance liquid chromatography on two cellulosed‐based chiral columns. The effects of isopropanol composition from 2% to 30% in the mobile phase and column temperature from 5 to 40 °C were investigated. Satisfactory resolutions were obtained for bitertanol ( 1 ), triticonazole ( 4 ), imazalil ( 5 ) with the (+)‐enantiomer eluted first and fenbuconazole ( 3 ) with the (—)‐enantiomer eluted first on Lux Cellulose‐2 and Lux Cellulose‐3. (+)‐Enantiomers of diclobutrazol ( 2 ) and triapenthenol ( 6 ) were first eluted on Lux Cellulose‐2. (—)‐Carfentrazone‐ethyl ( 8 ) were eluted first on Lux Cellulose‐2 and Lux Cellulose‐3 with incomplete separation. Reversed elution orders were obtained for ancymidol (7). (+)‐Ancymidol was first eluted on Lux Cellulose‐2 while on Lux Cellulose‐3 (—)‐ancymidol was first eluted. The results of the elution order at different column temperatures suggested that column temperature did not affect the optical signals of the enantiomers. These results will be helpful to prepare and analyze individual enantiomers of chiral pesticides. Chirality 27:32–38, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Wang P  Liu D  Jiang S  Gu X  Zhou Z 《Chirality》2007,19(2):114-119
Amylopectin-tris(phenylcarbamate) was synthesized and coated to aminopropylsilica to prepare chiral stationary phase. The chiral separations of fungicide enantiomers were performed by the CSP using high-performance liquid chromatography. Mobile phase was n-hexane and isopropanol, and flow rate was 1.0 ml/min. Detection wavelength was 230 nm. The influence of the percentage of isopropanol in the mobile phase on the separations was studied. Twelve chiral fungicides were tested and seven of them were found to show stereoselectivity on the CSP. The enantiomers of metalaxyl and benalaxyl got near baseline separations and myclobutanil, hexconazole, tebuconazole, uniconazole, and paclobutrazol enantiomers were completely separated. The decreasing percentage of isopropanol in the mobile phase resulted in better separation and longer analysis time. The enantiomers were identified by a circular dichroism (CD) detector and the CD spectra of the individual enantiomers were also studied by online scanning.  相似文献   

6.
Yubing Tang 《Chirality》1996,8(1):136-142
Eight randomly selected pharmaceuticals, which included ibuprofen, ketoprofen, albuterol, acebutolol, propafenone, betaxolol, methylphenidate, and homatropine, were directly separated on a cellulose tris(4-methylbenzoate) chiral stationary phase (CSP) without derivatization via normal phase mode HPLC. Enantioresolution was achieved by the optimization of the type and the ratio of mobile phase modifiers and additives. The modifiers included alcohols; the mobile phase additives were trifluoroacetic acid (TFA) and triethylamine (TEA). It was found that methanol and ethanol were superior to isopropanol as mobile phase modifiers for enhancing chiral separation of some of the chiral drugs. The results also demonstrated that TFA has a dominant effect on chiral separations for both acidic and basic chiral drugs, although for some basic drug such as homatropine, TEA was more beneficial at improving enantioseparation. The separation of acebutolol enantiomers was achieved for the first time by adding both TFA and TEA to the mobile phase. The purpose of this paper is to demonstrate that the applicability of cellulose based CSPs can be expanded by controlling the mobile phase compositions through the addition of trace amounts of achiral additives and the selection of the appropriate alcoholic modifier. © 1996 Wiley-Liss, Inc.  相似文献   

7.
《Chirality》2017,29(8):430-442
Six chiral derivatives of xanthones (CDXs) were covalently bonded to silica, yielding the corresponding xanthonic chiral stationary phases (XCSPs). The new XCSPs were packed into stainless‐steel columns with 150 x 4.6 mm i.d. Moreover, the greening of the chromatographic analysis by reducing the internal diameter (150 x 2.1 mm i.d.) of the liquid chromatography (LC) columns was also investigated. The enantioselective capability of these phases was evaluated by LC using different chemical classes of chiral compounds, including several types of drugs. A library of CDXs was evaluated in order to explore the principle of reciprocity as well as the chiral self‐recognition phenomenon. The separation of enantiomeric mixtures of CDXs was investigated under multimodal elution conditions. The XCSPs provided high specificity for the enantiomeric mixtures of CDXs evaluated mainly under normal‐phase elution conditions. Furthermore, two XCSPs were prepared with both enantiomers of the same xanthonic selector in order to confirm the inversion order elution.  相似文献   

8.
The enantiomeric separation ability of the newly prepared chiral stationary phases containing acridino‐18‐crown‐6 ether selectors was studied by high‐performance liquid chromatography (HPLC). The chiral stationary phases separated the enantiomers of selected protonated primary aralkylamines efficiently. The best results were found for the separation of the mixtures of enantiomers of NO2‐PEA. Chirality 26:651–654, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
《Chirality》2017,29(6):239-246
The enantioselective potential of two polysaccharide‐based chiral stationary phases for analysis of chiral structurally diverse biologically active compounds was evaluated in supercritical fluid chromatography using a set of 52 analytes. The chiral selectors immobilized on 2.5 μm silica particles were tris‐(3,5‐dimethylphenylcarmabate) derivatives of cellulose or amylose. The influence of the polysaccharide backbone, different organic modifiers, and different mobile phase additives on retention and enantioseparation was monitored. Conditions for fast baseline enantioseparation were found for the majority of the compounds. The success rate of baseline and partial enantioseparation with cellulose‐based chiral stationary phase was 51.9% and 15.4%, respectively. Using amylose‐based chiral stationary phase we obtained 76.9% of baseline enantioseparations and 9.6% of partial enantioseparations of the tested compounds. The best results on cellulose‐based chiral stationary phase were achieved particularly with propane‐2‐ol and a mixture of isopropylamine and trifluoroacetic acid as organic modifier and additive to CO2, respectively. Methanol and basic additive isopropylamine were preferred on amylose‐based chiral stationary phase. The complementary enantioselectivity of the cellulose‐ and amylose‐based chiral stationary phases allows separation of the majority of the tested structurally different compounds. Separation systems were found to be directly applicable for analyses of biologically active compounds of interest.  相似文献   

10.
Direct high‐performance liquid chromatographic (HPLC) separation of four bicyclo[2.2.2]octane based 2‐amino‐3‐carboxylic acid enantiomers were developed on chiral stationary phases (CSPs) containing different macrocyclic glycopeptide antibiotic selectors. The analyses were performed under reversed‐phase, polar organic and polar ionic mode on macrocyclic‐glycopeptide‐based Chirobiotic T, T2, TAG, and R columns. The effects of the mobile phase composition including the acid and base modifier, the structure of the analytes, and the temperature on the separations were investigated. Experiments were achieved at constant mobile phase compositions on different stationary phases in the temperature range 5–40°C. Thermodynamic parameters were calculated from plots of ln k or ln α versus 1/T. It was recognized that the enantioseparations in reversed‐phase and polar organic mode were enthalpically driven, but under polar‐ionic conditions entropically driven enantioseparation was observed as well. Baseline separation and determination of elution sequence were achieved in all cases. Chirality 26:200–208, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
Enantioseparation of the antidiarrheal drug, racecadotril, was investigated by liquid chromatography using polysaccharide‐type chiral stationary phases in polar organic mode. The enantiodiscrimininating properties of 4 different chiral columns (Chiralpak AD, Chiralcel OD, Chiralpak AS, Chiralcel OJ) with 5 different solvents (methanol, ethanol, 1‐propanol, 2‐propanol, and acetonitrile) at 5 different temperatures (5–40 °C) were investigated. Apart from Chiralpak AS column the other 3 columns showed significant enantioseparation capabilities. Among the tested mobile phases, alcohol type solvents were superior over acetonitrile, and significant differences in enantioselective performance of the selector were observed depending on the type of alcohol employed. Van't Hoff analysis was used for calculation of thermodynamic parameters which revealed that enantioseparation is mainly enthalpy controlled; however, enthropic control was also observed. Enantiopure standard was used to determine the enantiomer elution order, revealing chiral selector—and mobile‐phase dependent reversal of enantiomer elution order. Using the optimized method (Chiralcel OJ stationary phase, thermostated at 10 °C, 100% methanol, flow rate: 0.6 mL/min) baseline separation of racecadotril enantiomers (resolution = 3.00 ± 0.02) was achieved, with the R‐enantiomer eluting first. The method was validated according to the ICH guidelines, and its application was tested on capsule and granules containing the racemic mixture of the drug.  相似文献   

12.
The separation of R,R‐, S,S‐, and meso‐Koga bases on derivatized amylose chiral stationary phases (CSP) has been studied using different alcohol and alcohol‐hexane mixtures as eluant. Straight‐chain and branched alcohols with carbon numbers from one to four were investigated. The carbon number and geometry of the alcohol impacts the separation of Koga bases. The optimal separations were obtained using a mixture of methanol with linear or branched alcohol. Also, the elution order of meso‐ and R,R‐Koga base was switched as content of branched alcohol increases in cosolvent. The study of acidic and basic additive effects demonstrated that maintaining analytes in the free base state is crucial in order to achieve retention and separation. TEA alone or TEA and TFA mixture were used in the studies. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
β‐cyclodextrin (CD) and its derivatives HP‐β‐CD, DM‐β‐CD, and TM‐β‐CD have been employed as chiral selectors for the separation of three nonsteroidal antiinflammatory drugs (NSAIDs) and anticoagulant at relatively low concentration (8–15 mM) by capillary zone electrophoresis (CZE). In this study, baseline separation was achieved for ibuprofen, ketoprofen, naproxen, and warfarin. It was found that the addition of 0.1% hydroxypropyl methyl cellulose (HPMC) was effective for separation. Under these conditions, the S‐(+) enantiomer eluted before R‐(−) in terms of ibuprofen; the calculated energy values obtained from the molecular modeling correlated well with the elution order. An equation for calculating the pKa values by capillary electrophoresis was introduced, and the pKa values of the four chiral drugs at 25°C were obtained based on the equation. The value pKa + 0.5 is proposed to be the suitable pH of the background electrolyte for the separation of chiral compounds containing a carboxylic group. Chirality 11:56–62, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

14.
New and original heterocyclic α-enamido phosphine chiral solutes were prepared: four structurally similar racemates with the chirality center placed on the phosphorus atom, and four other related pairs of enantiomers with chirality borne by the carbon atoms of the phospholane ring. The structural variations were placed on an aliphatic heterocycle (six- or seven-member rings) and on the carbamate function (methyl or t-butyl). Their separation was achieved on a commercial cellulose tris-(3,5-dimethylphenylcarbamate) stationary phase (Lux Cellulose-1, Phenomenex) in supercritical fluid chromatography (SFC). The effects of molecular structure on SFC retention and enantioresolution were studied. Among these eight pairs of enantiomers, some reversal of elution order between similar compounds was observed. The effect of changing the organic solvent (methanol and ethanol) and its proportion (between 5 and 40%) in the mobile phase was investigated. Retention data were collected over the temperature range 0–50 °C, and the results interpreted from thermodynamic aspects. Chirality, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
In this study, 11 nitrogen‐heterocyclic pesticides were stereoselectively separated on amylose‐tris‐(5‐chloro‐2‐methylphenylcarbamate) chiral stationary phase, using reversed‐phase high‐performance liquid chromatography with diode array detector and optical rotation detector at 426 nm. The effects of mobile phase composition and column temperature (5–40 °C) on separation were investigated. When acetonitrile and water were used as mobile phase, satisfactory separations were obtained on amylose‐tris‐(5‐chloro‐2‐methylphenylcarbamate) for four pesticides with elution orders of (+)/(?)‐simeconazole (1) , (?)/(+)‐nuarimol (3) , (?)/(+)‐carfentrazone‐ethyl (4) , and (?)/(+)/(?)/(+)‐bromuconazole (9) and part separations for three with elution orders of (?)/(+)‐famoxadone (6) , (+)/(?)‐fenbuconazole (10) , and (?)/(+)‐triapenthenol (11) . Only two chromatographic peaks on diode array detector were obtained for diclobutrazol (2) , cyproconazole (5) , etaconazole (7) , and metconazole (8) , although they should have four stereoisomers in theory because of presences of two chiral centers in molecules. The stereoisomeric optical signals of all pesticides did not reverse with temperature changes but would reverse with different solvent types for some pesticides. These results will be useful to prepare and analyze individual enantiomers of chiral pesticides. Chirality 24:1031–1036, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Sulfated cyclofructan 6 (S‐CF6) and sulfated cyclodextrins (S‐α‐, β‐, γ‐CDs) are highly selective chiral selectors for the enantioseparation of basic solutes. In this study, S‐CF6 was introduced for the enantiomeric separation of four basic pharmaceuticals (including tamsulosin, tiropramide, bupivacaine, and norephedrine) by capillary electrophoresis (CE), and the enantiomeric separation performance was compared with S‐α‐, β‐, γ‐CDs. The effects of the chiral selector type, chiral selector concentration, operating voltage, and column temperature were examined and optimized. Excellent resolutions were obtained for all solutes on these chiral selectors. Chirality 25:735–742, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Rapid and simple isocratic high‐performance liquid chromatographic methods with UV detection were developed and validated for the direct resolution of racemic mixtures of hyoscyamine sulfate and zopiclone. The method involved the use of αl‐acid glycoprotein (AGP) as chiral stationary phase. The stereochemical separation factor (?) and the stereochemical resolution factor (Rs) obtained were 1.29 and 1.60 for hyoscyamine sulfate and 1.47 and 2.45 for zopiclone, respectively. The method was used for determination of chiral switching (eutomer) isomers: S‐hyoscyamine sulfate and eszopiclone. Several mobile phase parameters were investigated for controlling enantioselective retention and resolution on the chiral AGP column. The influence of mobile phase, concentration and type of uncharged organic modifier, ionic strength, and column temperature on enantioselectivity were studied. Calibration curves were linear in the ranges of 1–10 µg mL‐1 and 0.5–5 µg mL‐1 for S‐hyoscyamine sulfate and eszopiclone, respectively. The method is specific and sensitive, with lower limits of detection and quantifications of 0.156, 0.515 and 0.106, 0.349 for S‐hyoscyamine sulfate and eszopiclone, respectively. The method was used to identify quantitatively the enantiomers profile of the racemic mixtures of the studied drugs in their pharmaceutical preparations. Thermodynamic studies were performed to calculate the enthalpic ΔH and entropic ΔS terms. The results showed that enantiomer separation of the studied drugs were an enthalpic process. Chirality 28:49–57, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
Four groups of organophosphonate derivatives enantiomers were separated on N‐(3,5‐dinitrobenzoyl)‐S‐leucine chiral stationary phase. The three‐dimensional structures of the complexes between the single enantiotopic chiral compounds and chiral stationary phase have been studied using molecular model and molecular dynamics simulation. Detailed results regarding the conformation, auto‐docking, and thermodynamic estimation are presented. The elution order of the enantiomer could be determined from the energy. The predicted chiral discrimination was obtained by computational results. Chirality 25:101–106, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
To obtain milligram amounts of the enantiomers of benzoxazolinone derivatives to be tested for binding to adrenergic sites, analytical HPLC methods using derivatized amylose chiral stationary phases were developed for the direct enantioseparation of benzoxazolinone aminoalcohols and their aminoketone precursors, derivatives with one or two chirals centers. The separations were made using normal phase methodology with a mobile phase of n‐hexane‐alcohol (ethanol, 1‐propanol, or 2‐propanol) in various proportions, and silica‐based amylose (tris‐3, 5‐dimethylphenylcarbamate) Chiralpak AD and (tris‐(S)‐1‐phenylethylcarbamate) Chiralpak AS columns. The effects of concentration of various aliphatic alcohols in the mobile phase were studied. The best separation was achieved on Chiralpak AS, so preparative HPLC was set up with this chiral stationary phase using a mobile phase consisting of n‐hexane‐alcohol using isocratic conditions and multiple repetitive injections. Physicochemicals properties of enantiomers were reported The effect of structural features of the solutes on discrimination between the enantiomers was examined. Limit of detection (LD) and limit of quantification (LQ) were determined using both ultra‐violet (UV) and evaporative light‐scattering detection (ELSD). Chirality, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
Two different columns—Lux Cellulose-1 and Chiralpak CBH—were evaluated for their chiral recognition abilities for eight drugs comprising three β-blockers, one antacid, and four cathinones in polar-organic elution mode and reversed-phase elution mode, respectively. The factors that affected the enantioseparation were tested and optimized to develop a suitable chiral separation method whose LC conditions are compatible with MS detection. In polar-organic elution mode with the Lux Cellulose-1 column, methanol and acetonitrile were tested as the main components of the mobile phase. In addition, the effects of adding isopropanol as organic modifier, acidic additives (formic acid), and basic additives (diethylamine) were evaluated. In reversed-phase elution mode with the Chiralpak CBH column, the effect of type and concentration of organic modifier (isopropanol, acetonitrile, and methanol), the mobile phase pH (6.4 and 5.0), and buffer concentration (1mM-20mM ammonium acetate) were evaluated. The best enantioseparation was achieved with the Chiralpak CBH column with a mobile phase composed of 5mM ammonium acetate aqueous (pH = 6.4)/methanol (95/5, v/v) at a flow rate of 0.1 mL/min and a temperature of 30°C. Under these conditions, six of eight chiral drugs were baseline separated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号