首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Lanthanide (III) luminescence is very characteristic: it is characterized by narrow emission bands, large Stokes shift, and a long excited state lifetime. Moreover, chiral lanthanide complexes can emit strongly circularly polarized light in a way that is almost precluded to purely organic molecules. Thanks to the sensitivity and specificity of the Ln circularly polarized luminescence (CPL) signal, CPL‐active complexes are therefore employed as bioanalytical tools and other uses can be envisaged in many other fields. Here we present a brief overview of the most recently developed CPL‐active lanthanide complexes and a selected few examples of their applications. We briefly discuss the main mechanisms that can rationalize the observed outstanding CPL properties of these systems, and some practical suggestions on how to measure and report data. Chirality 27:1–13, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
The physical mechanism of cuticular color in Phelotrupes auratus was investigated by polarized inspection, spectrophotometry and transmission electron microscopy (TEM). No color change was observed when viewed through either a right‐ or left‐handed circular polarizer. Further, under the incidence of linearly polarized light, the reflected intensity was markedly reduced when observed through a linear polarizer set with its optical axis perpendicular to that of the incident light. These results indicate that P. auratus does not possess any circularly polarizing reflectors. TEM observations revealed a total of ten or twelve thin layers (about 60–120 nm in thickness) of two types of material (electron‐dense and electron‐lucent) alternately stacked in the epicuticle. The thickness of the layers in the different color forms of the beetle corresponded to the peak wavelengths in the reflectance spectra, λmax(α), with thicker layers found in beetles exhibiting reflectance peaks at longer wavelengths and vice versa. Based on these findings, we concluded that all the cuticular color forms of P. auratus were not produced by a circularly polarizing reflector but by a simple multilayer reflector.  相似文献   

3.
UV, circular dichroism (CD), fluorescence and circularly polarized luminescence (CPL) spectra were recorded for a set of four related [2.2.1] bicyclic compounds ((1S,4S)‐and (1R,4R)‐1,7,7‐trimethylbicyclo[2.2.1]heptan‐2‐one, namely (1S)‐ and (1R)‐camphor ( 1 ), (1S,4R)‐4,7,7‐trimethylbicyclo[2.2.1]hept‐5‐en‐2‐one, (1S)‐dehydro‐epicamphor ( 2 ), (1S,4S)‐1,7,7‐trimethylbicyclo[2.2.1]heptane‐2,5‐dione, (1S)‐5‐oxocamphor ( 3 ), (1S,4R)‐ and (1R,4S)‐1,7,7‐trimethylbicyclo[2.2.1]heptane‐2,3‐dione, (1S)‐ and (1R)‐camphorquinone ( 4 )) and a set of three related [2.2.2] bicyclic compounds (1S,4S)‐bicyclo[2.2.2]octan‐2,5‐dione (saturated diketone ( 5 )), (1R,4R)‐bicyclo[2.2.2]oct‐7‐en‐2,5‐dione (unsaturated diketone ( 6 )), ((1S,4S)‐bicyclo[2.2.2]oct‐7‐en‐5(S)‐ol‐2‐one (which we refer to as unsaturated hydroxy‐ketone ( 7 )). For the latter three compounds also mid‐IR vibrational circular dichroism (VCD) spectra were recorded and are presented. Time‐Dependent Density Functional (TD‐DFT) calculations provide a satisfactory interpretation of both absorption and emission chiroptical spectra and permit insight into ground and excited state electronic properties. We discuss the applicability of the octant rule or of other approximated models to rationalize the observed sign of the CPL. Chirality 25:589–599, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
The preparation of tetrakis((+)‐hfbc) lanthanide(III) complexes with an encapsulated alkali metal and ammonium ions M[Ln((+)‐hfbc)4] (hereafter abbreviated as M‐Ln : (+)‐hfbc, (+)‐heptafluorobutyrylcamphorate; M, ammonium or benzyl ammonium ions as well as alkali metal ions) was reported and discussed. The electronic circular dichroism (CD) spectra in the intraligand π?π* transition of M–Ln were examined in view of the solvent effect. Here, the concentration, alkali metal, and ammonium ion dependences are compared with the solid CD, 5D07F0(Eu(III)) excitation spectra, circularly polarized luminescence, and vibrational circular dichroism. It has been revealed that the dodecahedral eight coordinate DD‐8‐M‐Ln complexes in crystals are equilibrated between the diastereoselectively formed square antiprism eight coordinate SAPR‐8‐M‐Ln and [Ln((+)‐hfbc)3] in EtOH and CH3CN solutions or between the SAPR‐8‐M‐Ln and DD‐D2d(mmmm)‐8‐M‐Ln complexes in CHCl3 solution. The observed CD couplets are found to reflect the exciton CD couplets which are useful to determine the four‐bladed SAPR‐(llll) absolute configuration around the lanthanide(III) ion. Chirality 24:1055–1062, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The origin of P‐ or M‐chirality of methyl substituted 1,3‐cyclohexadienes are elucidated by time‐dependent density functional theory (TD‐DFT) calculation of 1,3‐cyclohexadiene derivatives and acyclic 1,3‐dienes. The sign‐inversion of the rotatory strength of the lowest excited state between 1,3‐cyclohexadiene and (5R)‐axial‐methyl‐1,3‐cyclohexadiene is caused by the conformation around the (C=)C‐C(‐Me) dihedral angle. The correlation between the sign of the rotatory strength and conformation has been found not only in methyl substituted derivatives but also fluoro substituted compounds. Chirality 27:476–478, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
In response to different stimuli, macrophages can differentiate into either a pro‐inflammatory subtype (M1, classically activated macrophages) or acquire an anti‐inflammatory phenotype (M2, alternatively activated macrophages). Candida albicans is the most important opportunistic fungus in nosocomial infections, and it is contended by neutrophils and macrophages during the first steps of the invasive infection. Murine macrophages responses to C. albicans have been widely studied, whereas the responses of human‐polarized macrophages remain less characterized. In this study, we have characterized the proteomic differences between human M1‐ and M2‐polarized macrophages, both in basal conditions and in response to C. albicans, by quantitative proteomics (2DE). This proteomic approach allowed us to identify metabolic routes and cytoskeletal rearrangement components that are the most relevant differences between M1 and M2 macrophages. The analysis has revealed fructose‐1,6‐bisphosphatase 1, a critical enzyme in gluconeogenesis, up‐regulated in M1, as a novel protein marker for macrophage polarization. Regarding the response to C. albicans, an M1‐to‐M2 switch in polarization was observed. This M1‐to‐M2 switch might contribute to Candida pathogenicity by decreasing the generation of specific immune responses, thus enhancing fungal survival and colonization, or instead, may be part of the host attempt to reduce the inflammation and limit the damage of the infection.  相似文献   

7.
In this report, we present experimental results on evanescent optical field (EOF) interaction with 85Rb vapor atoms. A circularly polarized EOF, 780 nm in wavelength, optically pumps the 85Rb atoms from its upper ground state to its D2 excited state. A probe beam connecting the lower ground state of D2 transition stimulates emission of radiation from the excited atoms, which indicates additional atomic population excited by the circularly polarized EOF. Theoretical analysis and experimental results indicate that the circularly polarized EOF excites the D2 transition from 85Rb(52S1/2, F?=?3, m F ?=?±1) ground state to excited state (52P3/2, F’?=?3, m F ?=?0) that creates an additional population to this state, which can be detected with the help of a probe laser beam.  相似文献   

8.
Efficient methods for quantifying dissociation constants have become increasingly important for high‐throughput mutagenesis studies in the postgenomic era. However, experimentally determining binding affinity is often laborious, requires large amounts of purified protein, and utilizes specialized equipment. Recently, pulse proteolysis has been shown to be a robust and simple method to determine the dissociation constants for a protein–ligand pair based on the increase in thermodynamic stability upon ligand binding. Here, we extend this technique to determine binding affinities for a protein–protein complex involving the β‐lactamase TEM‐1 and various β‐lactamase inhibitor protein (BLIP) mutants. Interaction with BLIP results in an increase in the denaturation curve midpoint, Cm, of TEM‐1, which correlates with the rank order of binding affinities for several BLIP mutants. Hence, pulse proteolysis is a simple, effective method to assay for mutations that modulate binding affinity in protein–protein complexes. From a small set (n = 4) of TEM‐1/BLIP mutant complexes, a linear relationship between energy of stabilization (dissociation constant) and ΔCm was observed. From this “calibration curve,” accurate dissociation constants for two additional BLIP mutants were calculated directly from proteolysis‐derived ΔCm values. Therefore, in addition to qualitative information, armed with knowledge of the dissociation constants from the WT protein and a limited number of mutants, accurate quantitation of binding affinities can be determined for additional mutants from pulse proteolysis. Minimal sample requirements and the suitability of impure protein preparations are important advantages that make pulse proteolysis a powerful tool for high‐throughput mutagenesis binding studies.  相似文献   

9.
Ovarian self‐incompatibility, including pre‐ and post‐zygotic reactions, is a complex mechanism for which we still lack many details relating to its function and significance. The joint presence of ovarian self‐incompatibility with style polymorphism is a rare combination that is found in the genus Narcissus. Usually, style polymorphic species have heteromorphic (diallelic and linked to style length locus) incompatibility, which prevents fertilization between individuals of the same morph, thereby helping to maintain equal proportions of floral morphs in populations. However, when present, self‐incompatibility in Narcissus is not linked to style polymorphism and cross‐fertilization within each morph is possible. Hence, self‐incompatibility in Narcissus is of particular interest when attempting to unravel the nature of the rejection reaction and aiming to assess possible cryptic differences in the fertilization process in intra‐ and inter‐morph crosses, which might ultimately explain the wide variation of morph‐ratio in the field. We examined the breeding system of Narcissus papyraceus, a style‐dimorphic species that has biased morph ratios in most of its populations. We studied pollen‐tube growth in the pistil and ovule fate after experimentally controlled hand pollinations. The growth of pollen tubes in self‐ and intra‐ and inter‐morph crosses was similar up to the point of micropyle penetration in both morphs but, subsequently, a pre‐zygotic failure appeared to affect male and female gametophytes in selfed pistils. A high proportion of ovules from self‐pollinated flowers showed signs of collapse and self‐pollen tubes were blocked or behaved abnormally before entering the embryo sac. Self‐incompatibility was stronger in the long‐styled morph than in the short‐styled morph. We did not find any conclusive sign of differential functioning between intra‐ and inter‐morph cross‐pollinations in any morph. These results enable us to rule out the possible effects of pollen–pistil interactions in N. papyraceus as a cause of morph‐ratio biases and confirm the exceptional nature of the self‐incompatibility mechanism in this polymorphic species. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 629–643.  相似文献   

10.
The fungus Candida albicans is the most common cause of mycotic infections in immunocompromised hosts. Little is known about the initial interactions between Candida and immune cell receptors, such as the C‐type lectin dendritic cell‐specific intracellular cell adhesion molecule‐3 (ICAM‐3)‐grabbing non‐integrin (DC‐SIGN), because a detailed characterization at the structural level is lacking. DC‐SIGN recognizes specific Candida‐associated molecular patterns, that is, mannan structures present in the cell wall of Candida. The molecular recognition mechanism is however poorly understood. We postulated that small differences in mannan‐branching may result in considerable differences in the binding affinity. Here, we exploit atomic force microscope‐based dynamic force spectroscopy with single Candida cells to gain better insight in the carbohydrate recognition capacity of DC‐SIGN. We demonstrate that slight differences in the N‐mannan structure of Candida, that is, the absence or presence of a phosphomannan side chain, results in differences in the recognition by DC‐SIGN as follows: (i) it contributes to the compliance of the outer cell wall of Candida, and (ii) its presence results in a higher binding energy of 1.6 kBT. The single‐bond affinity of tetrameric DC‐SIGN for wild‐type C. albicans is ~10.7 kBT and a dissociation constant kD of 23 μM, which is relatively strong compared with other carbohydrate–protein interactions described in the literature. In conclusion, this study shows that DC‐SIGN specifically recognizes mannan patterns on C. albicans with high affinity. Knowledge on the binding pocket of DC‐SIGN and its pathogenic ligands will lead to a better understanding of how fungal‐associated carbohydrate structures are recognized by receptors of the immune system and can ultimately contribute to the development of new anti‐fungal drugs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Collisional heating of plasma electrons in the field of an ultraintense ultrashort laser pulse is studied. The numerical results obtained by the method of molecular dynamics are compared with the well-known results from kinetic simulations. A model is proposed that provides a good agreement with the results of calculations for both linearly and circularly polarized high-intensity laser pulses.  相似文献   

12.
The basic units that constitute essential biopolymers (proteins and nucleic acids) are enantiomerically biased. Proteins are constructed from L‐amino acids and nucleic acids possess a backbone composed exclusively of D‐sugars. Photochirogenesis has been postulated to be the source of this homochirality of biomolecules: Asymmetric photochemical reactions were catalyzed by circularly polarized light (cpl) in interstellar environments and generated the first chiral prebiotic precursors. Enantiomers absorb cpl differently and this difference can dictate the kinetics of asymmetric photochemical reactions. These differences in absorption can be studied using circular dichroism (CD) and anisotropy spectroscopy. Rather than measuring the CD spectrum alone, the anisotropy factor g is recorded (CD divided by absorption). This factor g is directly related to the maximum achievable enantiomeric excess. We now report on the substantial influence of solvent and molecular surroundings on CD and anisotropy spectroscopy. This shows for the first time that CD and anisotropy signals depend just as much on the molecular surroundings of a molecule as on the nature of the molecule itself. CD and g spectra of amino acids in different solvents and in the solid state are presented here and the influence of these different surroundings on the spectra is discussed. Chirality 26:373–378, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
The present study was conducted to investigate the possible effect of 60 Hz circularly polarized magnetic fields (MFs) as promoters of genetically initiated lymphoma in AKR mice. One hundred sixty female animals were divided into four different groups. They were exposed to four different intensities of circularly polarized MFs. Animals received exposure to 60 Hz circularly polarized MF at field strengths (rms‐value) of 0 µT (sham control, T1, Group I), 5 µT(T2, Group II), 83.3 µT (T3, Group III), or 500 µT(T4, Group IV), for 21 h/day from the age of 4–6 weeks to the age of 44–46 weeks. There were no exposure‐related changes in mean survival time, clinical signs, body weights, hematological values, micronucleus assay, gene expression arrays, analysis of apoptosis, and necropsy findings. At histopathological examination, lymphoma was seen in all the groups. The tumor incidence was 31/40(78%), 30/40(75%), 32/40(80%), and 31/40(78%) in sham control, 5, 83.3, and 500 µT groups, respectively. However, there were no differences in the tumor incidence between the sham control (T1) and circularly polarized MF exposure groups (T2–T4). In conclusion, there was no evidence that exposure to 60 Hz circularly polarized MF strengths up to 500 µT promoted lymphoma in AKR mice. Bioelectromagnetics 31:130–139, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Human β‐galactoside α‐2,6‐sialyltransferase I (hST6Gal I) catalyses the synthesis of sialylated glycoconjugates involved in cell–cell interactions. Overexpression of hST6Gal I is observed in many different types of cancers, where it promotes metastasis through altered cell surface sialylation. A wide range of sialyltransferase (ST) inhibitors have been developed based on the natural donor, cytidine 5′‐monophosphate N‐acetylneuraminic acid (CMP‐Neu5Ac). Of these, analogues that are structurally similar to the transition state exhibit the highest inhibitory activity. In order to design inhibitors that are readily accessible synthetically and with favourable pharmacokinetic properties, an investigation of the replacement of the charged phosphodiester‐linker, present in many ST inhibitors, with a potential neutral isostere such as a carbamate or a 1,2,3‐triazole has been undertaken. To investigate this, molecular docking and molecular dynamics simulations were performed. These simulations provided an insight into the binding mode of previously reported phosphodiester‐linked ST inhibitors and demonstrated that targeting the proposed sialyl acceptor site is a viable option for producing selective inhibitors. The potential for a carbamate‐ or triazole‐linker as an isosteric replacement for the phosphodiester in transition‐state analogue ST inhibitors was established using molecular docking. Molecular dynamics simulations of carbamate‐ and phosphodiester‐linked compounds revealed that both classes exhibit consistent interactions with hST6Gal I. Overall, the results obtained from this study provide a rationale for synthetic and biological evaluation of triazole‐ and carbamate‐linked transition‐state analogue ST inhibitors as potential new antimetastatic agents. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The stereolability of chiral Hoveyda–Grubbs II type ruthenium complexes bearing N‐heterocyclic carbene (NHC) ligands with Syn‐phenyl groups on the backbone and Syn‐ or Anti‐oriented o‐tolyl N‐substituents was studied by resorting to dynamic high‐performance liquid chromatography (D‐HPLC). A complete chromatographic picture of the involved stereoisomers (four for Anti‐ and two for Syn‐complexes) was achieved at very low temperatures (?53°C and ?40°C respectively), at which the NHC‐Ru bond rotations were frozen out. Inspection of the chromatographic profiles recorded at higher temperatures revealed the presence of plateau zones between the couples of either Syn or Anti stereoisomers, attesting to the active interconversion between the eluted species. Such dynamic chromatograms were successfully simulated through procedures based on both theoretical plate and classical stochastic models. The good superimposition achieved between experimental and simulated chromatographic profiles allowed determination of the related isomerization energy barriers (ΔGisom#), all derived by rotation around the NHC‐Ru bond. The obtained diastereomerization barriers between the Anti isomers were found in very good agreement with those previously measured by experimental nuclear magnetic resonance (NMR) and assessed through Density Functional Theory (DFT) calculations. With the same approach, for the first time we also determined the enantiomerization barrier of the Syn isomer. Focused changes to the structure of complex Syn, studied by a molecular modeling approach, were found suitable to strongly reduce the stereolability arising from rotation around the NHC‐Ru bond. Chirality 27:685–692, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
Two variants of the Neotropical mangrove species Pelliciera rhizophorae distributed along both sides of the Isthmus of Panama were detected by different colouration of the floral bracts and the size of the floral and vegetative structures. These findings raised questions concerning a possible speciation event in P. rhizophorae, for which a series of macro‐ and microscopic morphological traits (reproductive and vegetative structures), molecular markers from plastid DNA and climatic profiles were analyzed. Samples of P. rhizophorae were collected in three localities from the Panamanian Caribbean and Pacific coasts. The data obtained from molecular markers and morphological traits showed significant differences between the variants. The climatic profiles showed contrasting characteristics of rainfall and temperature in their habitats: variant A is found in wetter zones and variant B occupies drier zones. Evidence suggesting that a process of incipient speciation has occurred in P. rhizophorae in response to ecogeographical isolation due to climatic factors is presented. The presence of two geographically separate genetic‐morphological groups, adapted to contrasting climatic conditions, will be the basis for suggesting the existence of incipient lineages in Pelliciera. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 499–510.  相似文献   

17.
This paper presents a numerical analysis of currents induced in a rat by linearly and circularly polarized magnetic fields of 50 Hz. Special focus was placed on pineal gland and retina of rats since these organs were often associated with the changes of melatonin synthesis and concentration. Induced currents in two MRI-based rat models with resolutions of up to 0.125 mm(3) were calculated by using the impedance method. We characterized the induced currents by amplitude and polarization. Calculated induced current densities were extremely small, i.e., < 30 microA/m(2) for both linearly and circularly polarized magnetic fields of 1.41 microT (peak). There were no significant differences in amplitude nor polarization of induced currents in the pineal gland between the linearly and the circularly polarized magnetic fields when the polarization was in a vertical plane. In contrast, the magnetic fields rotating in the horizontal plane produced most circularly polarized currents both in the pineal gland and in the retina.  相似文献   

18.
Recent studies of PAT proteins in Drosophila and Xenopus have revealed significant roles for this family of proteins in the polarized transport of lipid droplets and maternal determinants during early embryogenesis. In mammals, PAT proteins are known to function mainly in lipid metabolism, yet research has yet to establish a role for PAT proteins in mammalian embryogenesis. Oocytes and early cleavage stages in Sminthopsis macroura show obvious polarized cytoplasmic distribution of organelles, somewhat similar to Drosophila and Xenopus, suggesting that a PAT protein may also be involved in S. macroura embryonic development. In the present study, we identified a new marsupial gene for PAT family proteins, DPAT, from S. macroura. Expression analyses by RT‐PCR and whole mount fluorescent in situ hybridization revealed that DPAT expression was specific to oocytes and cleavage stage conceptuses. Analysis of the localization of lipid droplets during S. macroura early embryonic development found a polarized distribution of lipid droplets at the two‐ and four‐cell stage, and an asymmetric enrichment in blastomeres on one side of conceptuses from two‐ to eight‐cell stage. Lipid droplets largely segregate to pluriblast cells at the 16‐cell stage, suggesting a role in pluriblast lineage allocation. Mol. Reprod. Dev. 77: 373–383, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
20.
Dimerization of a hydroxycarbazole produces an axially chiral biaryl, BICOL ( 2 ). One enantiomer (R)‐ 2 , is capable of enantioselective binding to different polymorphs of DNA. The biaryl (R)‐ 2 was shown by fluorescence and circular dichroism to induce a shift of Z‐DNA to B‐DNA. The opposite enantiomer (S)‐ 2 shows no specific binding. The significant difference in behaviour between the two enantiomers (S)‐ 2 and (R)‐ 2 is in line with molecular modelling studies which show two very different binding geometries between the enantiomers with each polymorph of DNA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号