首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The luminescence properties of pyrene ethenes, both as monomer and aggregate species, are found to depend on the regioisomer structure. Systematic shifts in absorption, emission, and excitation spectra of the gem‐pyrene ethenes, both in solution and in rigid polymer hosts, are consistent with weakly interacting H‐aggregate formation. This aggregation leads to excimer‐like emission with Stokes shifts greater than 1 eV. Planar concentrators fabricated from gem‐pyrene diphenylethenes show comparable performance to previously reported inorganic phosphors. The UV absorption and emission properties of the planar concentrator devices exhibit potential for transparent solar concentrators or visible–blind photodetector applications. This is the first demonstration of exploiting the unusual photophysics of molecular aggregates in planar concentrators.  相似文献   

2.
Pure and Na+‐doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X‐ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X‐ray diffractogram exhibits well‐resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium‐doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3, Na+ enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242–457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na+ is doped into Alq3. Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light‐emitting phosphors for organic light‐emitting diodes, flat panel displays, solid‐state lighting technology – a step towards the desire to reduce energy consumption and generate pollution free light. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Complexation between the primary carrier of ligands in blood plasma, human serum transferrin (Tf), and a cyanine dye, 3,3′‐di(3‐sulfopropyl)‐4,5,4′,5′‐dibenzo‐9‐phenyl‐thiacarbocyanine‐triethylam monium salt (PTC) was investigated using fluorescence spectra, UV/Vis absorption spectra, synchronous fluorescence spectra, circular dichroism (CD) and molecular dynamic docking. The experimental results demonstrate that the formation of PTC–Tf complex is stabilized by van der Waal's interactions and hydrogen bonds, and the binding constants were found to be 8.55 × 106, 8.19 × 106 and 1.75 × 104 M?1. Moreover, fluorescence experiments prove that the operational mechanism for the fluorescence quenching is static quenching and non‐radiative energy transfer. Structural investigation of the PTC–Tf complexes via synchronous fluorescence spectra and CD showed that the structure of Tf became more stable with a major increase in the α‐helix content and increased polarity around the tryptophan residues after PTC binding. In addition, molecular modeling highlights the residues located in the N‐lobe, which retain high affinity for PTC. The mode of action of the PTC–Tf complex is illustrated by these results, and may provide an effective pathway for the transport and targeted delivery of antitumor agents. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
We assessed the influence of ultraviolet radiation (UV) on net photosynthetic CO2 assimilation rate (Pn) in Sorghum bicolor, with particular attention to examining whether UV can enhance Pn via direct absorption of UV and absorption of UV‐induced blue fluorescence by photosynthetic pigments. A polychromatic UV response spectrum of leaves was constructed by measuring Pn under different UV supplements using filters that had sharp transmission cut‐offs from 280 to 382 nm, against a background of non‐saturating visible light. When the abaxial surface was irradiated, Pn averaged 4.6% higher with the UV supplement that cut‐off UV at 311 nm, compared to lower and higher UV wavelength supplements. This former supplement differed from higher wavelength supplements by primarily providing more UV between 320 and 350 nm. To assess the possibility of direct absorption of UV by photosynthetic pigments, we measured the absorbance of extracted chlorophylls. Chlorophyll a had absorbance peaks at 340 and 389 nm that were 49 and 72% of that at the sorét peak. Chlorophyll b had absorbance peaks at 315 and 346 nm that were both 35% of that at the sorét peak. Since the epidermis transmits some UV, the strong UV absorbance of chlorophyll implies a potential role for irradiance beyond the bounds of the conventionally defined photosynthetically active radiation waveband (400–700 nm). To assess the role of absorption of UV‐induced blue fluorescence, we measured the UV‐induced fluorescence excitation and emission spectra of leaves. Abaxial excitation peaked at 328 nm, while emission peaked at 446 nm. In this analysis, we used our abaxial fluorescence excitation spectrum and the UV photosynthetic inhibition spectrum of Caldwell et al. (1986) to weight the UV irradiance with each cut‐off filter, thereby estimating the potential contribution of UV‐induced blue fluorescence to photosynthesis and the inhibitory effects of UV irradiance on photosynthesis, respectively. With a non‐saturating visible background, we estimate that the absorption of UV‐induced blue fluorescence and the direct absorption of UV by photosynthetic pigments maximally enhanced photosynthesis by about 1% each with the UV supplement that cut‐off UV at 311 nm. We suggest that a portion of the incident UV on the S. bicolor leaves was used to drive photosynthesis.  相似文献   

5.
The binding interaction of lovastatin with calf thymus DNA (ct‐DNA) was studied using UV/Vis absorption spectroscopy, fluorescence emission spectroscopy, circular dichroism (CD), viscosity measurement and molecular docking methods. The experimental results showed that there was an obvious binding interaction of lovastatin with ct‐DNA and the binding constant (Kb) was 5.60 × 103 M–1 at 298 K. In the binding process of lovastatin with ct‐DNA, the enthalpy change (ΔH0) and entropy change (ΔS0) were –24.9 kJ/mol and –12.0 J/mol/K, respectively, indicating that the main binding interaction forces were van der Waal's force and hydrogen bonding. The molecular docking results suggested that lovastatin preferred to bind on the minor groove of different B‐DNA fragments and the conformation change of lovastatin in the lovastatin–DNA complex was obviously observed, implying that the flexibility of lovastatin molecule plays an important role in the formation of the stable lovastatin–ct‐DNA complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A dysprosium‐zinc porphyrin, [DyZn(TPPS)H3O]n (1) (TPPS = tetra(4‐sulfonatophenyl)porphyrin), was prepared through solvothermal reactions and structurally characterized by single‐crystal X‐ray diffraction analyses. Complex 1 features a three‐dimensional (3‐D) porous open framework that is thermally stable up to 400 °C. Complex 1 displays a void space of 215 Å3, occupying 9.2% of the unit cell volume. The fluorescence spectra reveal that it shows an emission band in the red region. The fluorescence lifetime is 39 µsec and the quantum yield is 1.7%. The cyclic voltammetry (CV) measurement revealed one quasi‐reversible wave with E1/2 = 0.30 V. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A new bis[cobalt(II)porphyrin]‐Tröger's base conjugate was studied as a potential receptor for methyl esters of several amino acids. The conjugate was prepared as racemate, and then resolved via preparative high‐performance liquid chromatography (HPLC) on a chiral column. The high affinity to lysine, histidine, and proline methyl esters was found by complexation studies followed by UV‐Vis spectroscopy. The studies of pure enantiomers, followed by UV‐Vis and electronic circular dichroism spectroscopy, revealed the highest enantioselectivity for lysine methyl ester. Chirality 26:361–367, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
A novel and sensitive method for the determination of ceftazidime and cefepime in an active pharmaceutical ingredient (API) has been developed based on the fluorescence quenching of poly(ethylene glycol) (PEG)2000‐capped carbon quantum dots (CQDs) prepared using a chemical oxidation method. The quenching of fluorescence intensity is proportional to the concentration of ceftazidime and cefepime over the range of 0.33–3.30 and 0.24–2.40 µg/mL, respectively. The mode of interaction between PEG2000‐capped CQDs and ceftazidime/cefepime in aqueous solutions was investigated using a fluorescence, UV/Vis and Fourier transform infrared spectrometry (FTIR) at physiological pH. UV/Vis and FTIR spectra demonstrated that ground state compounds were formed through hydrophobic interaction the fluorescence quenching of CQDs caused by ceftazidime and cefepime. The quenching constants decreased with increases in temperature, which was consistent with static quenching. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Mercaptoethanol (ME), mercaptopropionic acid (MPA) and L‐cysteine (L‐Cys) having ‐SH functional groups were used as surface passivating agents for the wet chemical synthesis of ZnS nanoparticles. The effect of the thiol group on the optical and photoluminescence (PL) properties of ZnS nanoparticles was studied. L‐Cysteine‐capped ZnS nanoparticles showed the highest PL intensity among the studied capping agents, with a PL emission peak at 455 nm. The PL intensity was found to be dependent on the concentration of Zn2+ and S2– precursors. The effect of buffer on the PL intensity of L‐Cys‐capped ZnS nanoparticles was also studied. UV/Vis spectra showed blue shifting of the absorption edge. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, a simple and sensitive spectrofluorimetric method is presented for the determination of fluoxetine based on the enhancing effect of silver nanoparticles (AgNPs) on the terbium–fluoxetine fluorescence emission. The AgNPs were prepared by a simple reduction method and characterized by UV–Vis spectroscopy and transmission electron microscopy. It was indicated that these AgNPs have a remarkable amplifying effect on the terbium‐sensitized fluorescence of fluoxetine. The effects of various parameters such as AgNP and Tb3+ concentration and the pH of the media were investigated. Under obtained optimal conditions, the fluorescence intensity of the terbium–fluoxetine–AgNP system was enhanced linearly by increasing the concentration of fluoxetine in the range of 0.008 to 19 mg/L. The limit of detection (b + 3s) was 8.3 × 10‐4 mg/L. The interference effects of common species found in real samples were also studied. The method had good linearity, recovery, reproducibility and sensitivity, and was satisfactorily applied for the determination of fluoxetine in tablet formulations, human urine and plasma samples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Novel diselenide‐linked porphyrin dimers were synthesized under phase‐transfer catalysis conditions. The targeted compounds were characterized by 1H‐NMR, high‐resolution mass spectrometry, UV/VIS and fluorescence spectroscopies, redox‐potential measurements, and elemental analysis. The interaction of the title compounds with DNA was studied using UV/VIS, fluorescence, and circular dichroism (CD) spectroscopies. The relative rates of singlet‐oxygen production from the diselenide‐linked porphyrin dimers upon photoirradiation were also measured.  相似文献   

12.
Near‐UV excited narrow line red‐emitting phosphors, Eu3+‐activated Y2MoO6 systems, were synthesized using a simple molten salt reaction. The structure and photoluminescence characteristics were investigated using X‐ray powder diffraction, UV–Vis absorption and fluorescent spectrophotometry. The excitation spectra show strong broad‐band absorptions in the near‐UV to blue light regions which match the radiation of near‐UV light‐emitting diode chips well. Under excitation of either near‐UV or blue light, intense red emission with a main peak of 611 nm is observed, ascribed to the 5D07F2 transition of Eu3+ ions; the optimal doping concentration is 20 mol%. The chromaticity coordinates (x = 0.65, y = 0.34) of the as‐obtained phosphor are very close to the National Television Standard Committee standard values (x = 0.67, y = 0.33). All these characteristics suggest that this material is a promising red‐emitting phosphor candidate for white‐LEDs based on near‐UV LED chips. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Yang Liu  Rutao Liu 《Luminescence》2015,30(8):1195-1200
Silver nanoparticles (nanoAg) are used more and more widely, particularly because of their antimicrobial properties. The effect of exposure to nanoAg on the structure of superoxide dismutase (SOD) was thoroughly investigated using fluorescence measurements, synchronous fluorescence spectroscopy, steady‐state and time‐resolved fluorescence quenching measurements, UV/Vis absorption spectroscopy, resonance light scattering (RLS), circular dichroism (CD), isothermal titration calorimetry (ITC) and high‐resolution transmission electron microscopy (HRTEM). Through van der Waal's force, nanoAg interacted with Cu–Zn SOD and influenced the active site by inducing structural changes, which influenced the function of SOD. The fluorescence studies show that both static and dynamic quenching processes occur. This paper provides reference data for toxicological studies of nanoAg, which are important in the future development of nanotechnology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A reactive Tb(III) complex with p‐aminobenzoic acid (p‐ABA) and methacrylic acid (MAA) as ligands was synthesized. A novel copolymer was synthesized by free radical copolymerization of styrene and the reactive Tb(III) complex in dimethyl sulfoxide (DMSO) with 2,2′‐azobis(2‐methylpropionitrile) (AIBN) as the initiator. IR and UV/Vis spectra indicate that the copolymer exhibited absorption from polystyrene and the complex. Thermogravimetric analysis indicates that the copolymer remained stable up to 357°C and the thermal stability was significantly improved in comparison with polymer matrix and the Tb(III) complex. The luminescent intensity of the synthetic terbium macromolecular complexes increased with increasing complex monomer content. Moreover, concentration quenching was not observed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Core‐shell CdS/ZnS (Zn 0.025?0.125 M) and CdS:Cu2+(1%)/ZnS nanoparticles were successfully synthesized using a chemical method. X‐ray diffraction (XRD), high‐resolution transmission electron microscopy (HR TEM), photoluminescence (PL) and UV/Visible (UV/Vis) techniques were used to characterize the novel CdS/ZnS and CdS:Cu2+/ZnS core–shell nanoparticles. All absorption peaks of the synthesized samples were highly blue‐shifted from the bulk CdS and ZnS. Very narrow and symmetric PL emission was observed in the yellow region for core–shell CdS/ZnS. Furthermore, the PL emission of CdS/ZnS was tuned into orange region by incorporate the Cu ion into the core CdS lattice. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
β‐Carotene and astaxanthin are two carotenoids with powerful antioxidant properties, but the binding mechanisms of β‐carotene/astaxanthin to proteases remain unclear. In this study, the interaction of these two carotenoids with trypsin and pepsin was investigated using steady‐state and time‐resolved fluorescence measurements, synchronous fluorescence spectroscopy, UV–vis absorption spectroscopy and circular dichroism (CD) spectroscopy. The experimental results indicated that the quenching mechanisms of trypsin/pepsin by the two carotenoids are static processes. The binding constants of trypsin and pepsin with these two carotenoids are in the following order: astaxanthin–trypsin > astaxanthin–pepsin > β‐carotene–trypsin > β‐carotene–pepsin, respectively. Thermodynamic investigations revealed that the interaction between the two carotenoids and trypsin/pepsin is synergistically driven by enthalpy and entropy, and hydrophobic forces and electrostatic attraction have a significant role in the reactions. In addition, as shown by synchronous fluorescence spectroscopy, UV–vis absorption spectroscopy and CD, the two carotenoids may induce conformational and microenvironmental changes in trypsin/pepsin. The study provides an accurate and full basic data for clarifying the binding mechanisms of the two carotenoids with trypsin/pepsin and is helpful in understanding their effect on protein function and their biological activity in vivo. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Fluorescence emission of free protoporphyrin IX (PPIX, em. approximately 626 nm), zinc protoporphyrin IX (ZPP, em. approximately 594 nm) and fluorescent heme degradation product (FHDP, em. approximately 466 nm) are identified and simultaneously detected in mouse and human red cell hemolysates, when excited at 365 nm. A novel method is established for comparing relative FHDP, PPIX and ZPP levels in hemolysates without performing red cell porphyrin extractions. The ZPP fluorescence directly measured in hemolysates (F(365/594)) correlates with the ZPP fluorescence obtained from acetone/water extraction (R(2) = 0.9515, P < 0.0001). The relative total porphyrin (ZPP and PPIX) fluorescence obtained from direct hemolysate fluorescence measurements also correlates with red blood cell total porphyrins determined by ethyl acetate extraction (Piomelli extraction, R(2) = 0.88, P < 0.0001). These fluorescent species serves as biomarkers for alterations in Hb synthesis and Hb stability.  相似文献   

18.
A new fluorescent Al3+‐probe, N‐allyl‐4‐[3,3′‐((2‐aminoethyl)azanediyl)‐bis(N´‐(2‐hydroxybenzylidene)propanehy‐drazide)]‐1,8‐naphthalimide ( L ), was designed and synthesized based on 1,8‐naphthalimide. The probe L contains 1,8‐naphthalimide moiety as the fluorophore and a Schiff base as the recognition group. The structure of L was determined by single crystal X‐ray. L emission at 526 nm increased on addition of Al3+ under excitation wavelength at 350 nm. L exhibited high selectivity and sensitivity fluorescence emission towards to Al3+ in ethanol/Tris–HCl buffer solution (1:1, v/v, pH = 7.2) as compared with other tested metal ions. A good linearity with a correlation coefficient (R2) of 0.99 was observed in the concentration range 2–10 μM. The binding constant and the detection limit of L for Al3+ were calculated to 2.6 × 104 M?1 and 0.34 μM, respectively. The results of experiments that including Job plot, ultraviolet–visible (UV–Vis) light titration, fluorescence titration, ESI‐MS and 1H NMR titration, indicated a 1:1 stoichiometric complex between L and Al3+. L was highly effective in monitoring Al3+ in real‐life Yellow River and tap water samples.  相似文献   

19.
《Chirality》2017,29(3-4):107-114
Conjugated homopolymer poly(9,9‐bis(3‐((S )‐2‐methylbutylpropanoate))fluorene) (PSF) with chiral pendants was synthesized and characterized. Dissolution experiments show that PSF is well dissolved in racemic limonene at high temperature and begins aggregating upon sequential cooling treatment. The corresponding assemblies were transferred to quartz plate by the spin‐coating method. Comparably, film casting from chloroform solution was also prepared. Upon annealing thermal treatments, these PSF films exhibited perfect mirror circular dichroism (CD) Cotton effects and dissymmetry ratios. Optical absorption spectroscopy (UV‐vis), CD, and fluorescence spectroscopy results reveal that chiral side chains successfully induced M ‐ and P ‐helical structures in aggregates and films, and this significant difference was ascribed to their differential supramolecular conformations.  相似文献   

20.
We isolated and characterized a green fluorescent protein (GFP) from the sea cactus Cavernularia obesa. This GFP exists as a dimer and has absorption maxima at 388 and 498 nm. Excitation at 388 nm leads to blue fluorescence (456 nm maximum) at pH 5 and below, and green fluorescence (507 nm maximum) at pH 7 and above, and the GFP is remarkably stable at pH 4. Excitation at 498 nm leads to green fluorescence (507 nm maximum) from pH 5 to pH 9. We introduced five amino acid substitutions so that this GFP formed monomers rather than dimers and then used this monomeric form to visualize intracellular pH change during the phagocytosis of living cells by use of fluorescence microscopy. The intracellular pH change is visualized by use of a simple long‐pass emission filter with single‐wavelength excitation, which is technically easier to use than dual‐emission fluorescent proteins that require dual‐wavelength excitation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号