首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novel chiral diisopropyl spiro bis(isoxazoline) ligands, anti‐i‐Pr‐SPRIX and syn‐i‐Pr‐SPRIX, were designed and synthesized. Their catalytic utility, X‐ray crystallographic analyses, and complexation studies demonstrated the structural features of tetraisopropyl spiro bis(isoxazoline) ligand, i‐Pr‐SPRIX, which is a prominent ligand in various enantioselective Pd catalytic processes: All i‐Pr groups work in collaboration to create an effective asymmetric environment. Chirality 27:532–537, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
A variety of chiral derivatives of benzo[d]naphtho[1,2‐b]pyran‐6‐one were prepared in a single step by Et3N‐mediated condensation of homophthalic anhydride with different derivatives of (S)‐amino acid chlorides at –5 °C by employing a chiral pool methodology. Chirality 27:951–957, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Guozhen Wu  Peijie Wang 《Chirality》2015,27(11):820-825
A bond polarizability algorithm was developed and applied to interpret the Raman optical activity (ROA) intensity. It is demonstrated that for the chiral molecule such as S(+)2,2‐dimethyl‐1,3‐dioxolane‐4‐methanol there exists approximate (or symmetry breaking) mirror reflection that reverses the signs of the differential bond polarizabilities of the pair bond coordinates that are related to each other by the mirror reflection, just like that between the right and left enantiomers. The magnitude difference of the differential bond polarizabilities of the pair bond coordinates becomes smaller as they are farther away from the asymmetric atom. Hence, that the asymmetric atom (center) plays a central role in ROA is confirmed from a spectroscopic viewpoint. Meanwhile, the concept of intramolecular enantiomerism is proposed. Chirality 27:820–825, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
A receptor assembly composed of iron(II) triflate and pyridine‐2,6‐dicarbaldehyde was used to determine the enantiomeric excess (ee) of alpha‐chiral primary amines using circular dichroism spectroscopy. The alpha chiral amines condense with the dialdehyde to form a diimine, which forms a 2:1 octahedral complex with iron(II). The ee values of unknown concentrations of alpha‐chiral amines were determined by constructing calibration curves for each amine and then measuring the ellipticity at 600 nm. This improves our previously reported assay for ee determination of chiral primary amines by further increasing the wavelength at which CD is measured and reducing the absolute error of the assay. Chirality 27:294–298, 2015. 2015 Wiley Periodicals, Inc.  相似文献   

5.
Myung Ho Hyun 《Chirality》2015,27(9):576-588
Crown ether‐based chiral stationary phases (CSPs) have been known to be useful for the resolution of racemic primary amino compounds. In particular, CSPs based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid have been reported to be useful for the resolution of secondary amino compounds as well as primary amino compounds. In this article, the process of developing various CSPs based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid to improve the chiral recognition efficiency and/or the stability of the CSPs and their applications to the resolution of various primary and nonprimary amino compounds are reviewed. Chirality 27:576588, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
A novel phenylacetylene monomer having a perfluorinated alkyl group ( M-F ) was synthesized and polymerized in a chiral catalytic system to yield a one‐handed helical polymer. The ability and efficiency of the chiral induction of the fluorine‐containing monomer in the helix‐sense‐selective polymerization (HSSP) was much higher than those of a monomer having the corresponding alkyl group ( M-H ) we reported before. The resulting polymer P-F showed cis‐cisoidal one‐handed helical conformation, and was suitable for highly selective photocyclic aromatization (SCAT) to give a 2D surface modifier ( T-F ). Oxygen permselectivity through a base polymer membrane was highly enhanced from 1.83 to 2.36 by adding a small amount (1–5 wt%) of the 2D surface modifier T-F . The improvement was thought to be caused by improvement of solution selectivity on the membrane surface which the 2D surface modifier effectively covered. Chirality 27:459–463, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
A simple and stereoselective synthesis of 3‐methylthalidomide, a configurationally stable thalidomide analog, is presented. Herein we describe the synthesis of (R)‐3‐methylthalidomide starting from (S)‐alanine by piperidin‐2‐one ring assembly approach in high yield and enantiomeric purity without using a chiral auxiliary or reagent. Starting from (R)‐alanine, the corresponding (S)‐3‐methylthalidomide can be prepared using the same methodology. Chirality 27:619–624, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
We studied the spontaneous formation of chiral crystals of four diaryl ethers, 3‐phenoxybenzaldehyde, 1 ; 1,3‐dimethyl‐2‐phenoxybenzene, 2 ; di(4‐aminophenyl) ether, 3 ; and di(p‐tolyl) ether, 4 . Compounds 1 , 3 , and 4 form conformationally chiral molecules in the solid state, while the chirality of 2 arises from the formation of supramolecular helices. Compound 1 is a liquid at ambient temperature, but 2 , 3 , 4 are crystalline, and solid‐state CD‐spectroscopy showed that they could be obtained as optically active bulk samples. It should be noted that the optical activity arise upon crystallization, and no optically active precursors were used. Indeed, even commercial samples of 3 and 4 were found to be optically active, giving evidence for the ease at which total spontaneous resolution may occur in certain systems. Chirality 27:425‐429, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
The reduction of the axially chiral N‐(o‐aryl)‐5,5‐dimethyl‐2,4‐oxazolidinediones by NaBH4 yielded axially chiral N‐(o‐aryl)‐4‐hydroxy‐5,5‐dimethyl‐2‐oxazolidinone enantiomers having a chiral center at C‐4, with 100% diastereoselectivity as has been shown by their 1H and 13C NMR spectra and by enantioselective HPLC analysis. The resolved enantiomeric isomers were found to interconvert thermally through an aldehyde intermediate formed upon ring cleavage via a latent ring‐chain‐ring tautomerization. It was found that the rate of enantiomerization depended on the size and the electronic effect of the ortho substituent present on the aryl ring bonded to the nitrogen of the heterocycle. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
A novel nickel(II) hexaaza macrocyclic complex, [Ni(LR,R)](ClO4)2 ( 1 ), containing chiral pendant groups was synthesized by an efficient one‐pot template condensation and characterized (LR,R═1,8‐di((R)‐α‐methylnaphthyl)‐1,3,6,8,10,13‐hexaazacyclotetradecane). The crystal structure of compound 1 was determined by single‐crystal X‐ray analysis. The complex was found to have a square‐planar coordination environment for the nickel(II) ion. Open framework [Ni(LR,R)]3[C6H3(COO)3]2 ( 2 ) was constructed from the self‐assembly of compound 1 with deprotonated 1,3,5‐benzenetricarboxylic acid, BTC3?. Chiral discrimination of rac‐1,1′‐bi‐2‐naphthol and rac‐2,2,2‐trifluoro‐1‐(9‐anthryl)ethanol was performed to determine the chiral recognition ability of the chiral complex ( 1 ) and its self‐assembled framework ( 2 ). Binaphthol showed a good chiral discrimination on the framework ( 2 ). The optimum experimental conditions for the chiral discrimination were examined by changing the weight ratio between the macrocyclic complex 1 or self‐assembled framework 2 and racemates. The detailed synthetic procedures, spectroscopic data including single‐crystal X‐ray analysis, and the results of the chiral recognition for the compounds are described. Chirality, 25:54‐58, 2013 © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Four novel chiral amino alcohols were synthesized from D‐(+)‐camphor and utilized as ligands in a Cu(I)‐catalyzed asymmetric Henry reaction. The reactions were carried out under mild conditions with excellent enantioselectivities and moderate yields without the exclusion of air or moisture. The highest enantioselectivity was observed up to 94% enantiomeric excess (ee) with ligand L1 in toluene at room temperature. Chirality 27:761–765, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
Several novel chiral bifunctional L‐thiazoline‐thiourea derivatives were easily synthesized from commercially available L‐cysteine in high yield. These catalysts were subsequently applied to the enantioselective Michael addition of acetylacetone to β‐nitrostyrenes. The products with S configuration were obtained in 98% enantiomeric excess (ee) when the L‐thiazoline‐thiourea derivatives were used. A plausible transition state model is proposed to explain the observed enantioselectivities. Chirality 27:979–988, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Preparative enantioseparation of four β‐substituted‐2‐phenylpropionic acids was performed by countercurrent chromatography with substituted β‐cyclodextrin as chiral selectors. The two‐phase solvent system was composed of n‐hexane‐ethyl acetate‐0.10 mol L‐1 of phosphate buffer solution at pH 2.67 containing 0.10 mol L‐1 of hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) or sulfobutylether‐β‐cyclodextrin (SBE‐β‐CD). The influence factors, including the type of substituted β‐cyclodextrin, composition of organic phase, concentration of chiral selector, pH value of the aqueous phase, and equilibrium temperature were optimized by enantioselective liquid–liquid extraction. Under the optimum separation conditions, 100 mg of 2‐phenylbutyric acid, 100 mg of tropic acid, and 50 mg of 2,3‐diphenylpropionic acid were successfully enantioseparated by high‐speed countercurrent chromatography, and the recovery of the (±)‐enantiomers was in the range of 90–91% for (±)‐2‐phenylbutyric acid, 91–92% for (±)‐tropic acid, 85–87% for (±)‐2,3‐diphenylpropionic acid with purity of over 97%, 96%, and 98%, respectively. The formation of 1:1 stoichiometric inclusion complex of β‐substituted‐2‐phenylpropionic acids with HP‐β‐CD was determined by UV spectrophotometry and the inclusion constants were calculated by a modified Benesi‐Hildebrand equation. The results showed that different enantioselectivities among different racemates were mainly caused by different enantiorecognition between each enantiomer and HP‐β‐CD, while it might be partially caused by different inclusion capacity between racemic solutes and HP‐β‐CD. Chirality 27:795–801, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
Enantiopure 3((R)‐ and 3((S)‐1‐phenylethyl)‐4‐oxazoline‐2‐ones were evaluated as chiral building blocks for the divergent construction of heterocycles with stereogenic quaternary centers. The N‐(R)‐ or N‐(S)‐1‐phenylethyl group of these compounds proved to be an efficient chiral auxiliary for the asymmetric induction of the 4‐ and 5‐positions of the 4‐oxazolin‐2‐one ring through thermal and MW‐promoted nucleophilic conjugated addition to Michael acceptors and alkyl halides. The resulting adducts were transformed via a cascade process into fused six‐membered carbo‐ and heterocycles. The structure of the reaction products depended on the electrophiles and reaction conditions used. Alternative isomeric 4‐methylene‐2‐oxazolidinones served as chiral precursors for a versatile and divergent approach to highly substituted cyclic carbamates. DFT quantum calculations showed that the formation of bicyclic pyranyl compounds was generated by a diastereoselective concerted hetero‐Diels‐Alder cycloaddition.  相似文献   

15.
L‐α‐Amino esters were considered valuable chiral starting materials in the condensation reaction with trifluoroacetaldehyde (fluoral) ethyl hemiacetal to obtain new functionalized trifluoromethyl aldimines. Starting from these latter compounds, isovaleraldehyde was used in proline‐catalyzed Mannich‐type addition reactions to give trifluoromethyl syn‐ or anti‐γ‐amino alcohols bearing the L‐α‐amino ester function, simply by changing the reaction temperature. Chirality 27:571575, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
The enantioselective photolysis of a cold gas‐phase noncovalent complex of tryptophan with alkali‐metalized L‐serine, M+(L‐Ser)(Trp) (M = Na and Li), was examined using a tandem mass spectrometer containing a variable‐temperature ion trap. CO2 loss from Trp in the clusters was enantiomerically selective in ultraviolet excitation with linearly polarized light. M+(L‐Ser) promoted the enantioselective photolysis of Trp as a chiral auxiliary. The enantioselective photolysis of the D‐enantiomer was applied to a quantitative chiral analysis, in which the optical purity of tryptophan could be determined by measuring the relative abundance ratio R of the enantioselective CO2 loss to the chiral‐independent evaporation of L‐Ser in a single photodissociation mass spectrum of M+(L‐Ser)(Trp). Chirality 27:349–352, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
The optically active C3 synthetic blocks are remarkably versatile intermediates for the synthesis of numerous pharmaceuticals and agrochemicals. This work provides a simple and efficient enzymatic synthetic route for the environment‐friendly synthesis of C3 chiral building blocks. Chloroperoxidase (CPO)‐catalyzed enantioselective halo‐hydroxylation and epoxidation of chloropropene and allyl alcohol was employed to prepare C3 chiral building blocks in this work, including (R)‐2,3‐dichloro‐1‐propanol (DCP*), (R)‐2,3‐epoxy‐1‐propanol (GLD*), and (R)‐3‐chloro‐1‐2‐propanediol (CPD*). The ee values of the formed C3 chiral building blocks DCP*, CPD*, and glycidol were 98.1, 97.5, and 96.7%, respectively. Moreover, the use of small amount of imidazolium ionic liquid enhanced the yield efficiently due to the increase of solubility of hydrophobic organic substrates in aqueous reaction media, as well as the improvement of affinity and selectivity of CPO to substrate. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:724–729, 2015  相似文献   

18.
Halogenated chiral molecules have become important in several fields of science, industry, and society as drugs, natural compounds, agrochemicals, environmental pollutants, synthetic products, and chiral supports. Meanwhile, the perception of the halogen moiety in organic compounds and its role in recognition processes changed. Indeed, the recognition of the halogen bond as an intermolecular interaction occurring when the halogen acts as a Lewis acid had a strong impact, particularly in crystal engineering and medicinal chemistry. Due to this renewed interest in the potentialities of chiral organohalogens, here we focus on selected recent applications dealing with enantioseparations of halogenated compounds on polysaccharide‐based chiral stationary phases (CSPs), widely used in liquid chromatography (LC). In particular, recently the first case of halogen bonding‐driven high‐performance LC (HPLC) enantioseparation was reported on a cellulose‐based CSP. Along with enantioseparations performed under conventional HPLC, representative applications using supercritical fluid chromatography (SFC) are reported. Chirality 27:667–684, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
A novel method for chiral separation of flurbiprofen enantiomers was developed using aqueous two‐phase extraction (ATPE) coupled with biphasic recognition chiral extraction (BRCE). An aqueous two‐phase system (ATPS) was used as an extracting solvent which was composed of ethanol (35.0% w/w) and ammonium sulfate (18.0% w/w). The chiral selectors in ATPS for BRCE consideration were L‐dioctyl tartrate and L‐tryptophan, which were screened from amino acids, β‐cyclodextrin derivatives, and L‐tartrate esters. Factors such as the amounts of L‐dioctyl tartrate and L‐tryptophan, pH, flurbiprofen concentration, and the operation temperature were investigated in terms of chiral separation of flurbiprofen enantiomers. The optimum conditions were as follows: L‐dioctyl tartrate, 80 mg; L‐tryptophan, 40 mg; pH, 4.0; flurbiprofen concentration, 0.10 mmol/L; and temperature, 25 °C. The maximum separation factor α for flurbiprofen enantiomers could reach 2.34. The mechanism of chiral separation of flurbiprofen enantiomers is discussed and studied. The results showed that synergistic extraction has been established by L‐dioctyl tartrate and L‐tryptophan, which enantioselectively recognized R‐ and S‐enantiomers in top and bottom phases, respectively. Compared to conventional liquid–liquid extraction, ATPE coupled with BRCE possessed higher separation efficiency and enantioselectivity without the use of any other organic solvents. The proposed method is a potential and powerful alternative to conventional extraction for separation of various enantiomers. Chirality 27:650–657, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
In this study, R(+)‐α‐methylbenzylamine‐modified magnetic chiral sorbent was synthesized and assessed as a new enantioselective solid phase sorbent for separation of mandelic acid enantiomers from aqueous solutions. The chemical structures and magnetic properties of the new sorbent were characterized by vibrating sample magnetometry, transmission electron microscopy, Fourier transform infrared spectroscopy, and dynamic light scattering. The effects of different variables such as the initial concentration of racemic mandelic acid, dosage of sorbent, and contact time upon sorption characteristics of mandelic acid enantiomers on magnetic chiral sorbent were investigated. The sorption of mandelic acid enantiomers followed a pseudo‐second‐order reaction and equilibrium experiments were well fitted to a Langmuir isotherm model. The maximum adsorption capacity of racemic mandelic acid on to the magnetic chiral sorbent was found to be 405 mg g?1. The magnetic chiral sorbent has a greater affinity for (S)‐(+)‐mandelic acid compared to (R)‐(?)‐mandelic acid. The optimum resolution was achieved with 10 mL 30 mM of racemic mandelic acid and 110 mg of magnetic chiral sorbent. The best percent enantiomeric excess values (up to 64%) were obtained by use of a chiralpak AD‐H column. Chirality 27:835–842, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号