首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria play important roles as the powerhouse of the cell. After cerebral ischemia, mitochondria overproduce reactive oxygen species (ROS), which have been thoroughly studied with the use of superoxide dismutase transgenic or knockout animals. ROS directly damage lipids, proteins, and nucleic acids in the cell. Moreover, ROS activate various molecular signaling pathways. Apoptosis-related signals return to mitochondria, then mitochondria induce cell death through the release of pro-apoptotic proteins such as cytochrome c or apoptosis-inducing factor. Although the mechanisms of cell death after cerebral ischemia remain unclear, mitochondria obviously play a role by activating signaling pathways through ROS production and by regulating mitochondria-dependent apoptosis pathways.  相似文献   

2.
Impact of silencing HO-2 on EC-SOD and the mitochondrial signaling pathway   总被引:1,自引:0,他引:1  
The contribution of heme oxygenase HO-2, the primary source of bilirubin and carbon monoxide (CO) under physiological conditions, to the regulation of vascular function has remained largely unexplored. Using siRNA HO-2, we examined the effect of suppressed levels of HO-2 on vascular antioxidant and survival proteins. In vivo HO-2 siRNA treatment decreased the basal levels of EC-SOD, pAKT proteins (serine-473 and threonine-308), without changing Akt protein expression. HO-2 siRNA treatment increased 3-nitrotyrosine (3-NT) and apoptotic signaling kinase-1 (ASK-1) (P < 0.01). HO activity was decreased by the use of siRNA HO-2. We extended these studies to the mitochondria, examining for the presence of HO-1 and its role in the regulation of pro- and anti-apoptotic proteins. HO activity was increased by the administration of CoPP resulting in the translocation of HO-1 into the mitochondria, mainly to the inner face of the mitochondrial inner membrane. These findings suggest that HO-2 is critical in the maintenance of heme homeostasis and also the regulation of apoptosis by controlling levels of EC-SOD, Akt, 3-NT, and ASK-1. In addition, localization of HO-1 in the mitochondrial compartment plays a critical role in mitochondria-mediated apoptosis.  相似文献   

3.
4.
Liao X  Wang X  Gu Y  Chen Q  Chen LY 《Life sciences》2005,77(2):160-174
Recent evidences suggest that mechanical overload associated with abnormal blood pressure causes apoptosis in cardiovascular system. Still, the intracellular signaling leading to cardiomyocyte apoptosis has not been fully defined. Previous reports ascribed stretch-induced cardiomyocyte apoptosis to rennin-angiotensin-system (RAS) signaling and/or mitochondria-dependent apoptosis pathway. The present study shows the involvement of death receptor signaling in mechanical stretch-induced cardiomyocyte apoptosis. By employing a well-described in vitro stretch model, we studied stretch-induced apoptosis and found that the death receptor-mediated apoptotic signaling was activated in stretch-induced apoptosis in neonatal rat cardiomyocytes. The major finding are as following: (1) The mechanical stretch activated death receptor-mediated apoptotic signaling in cardiomyocytes, including activation of caspases 8, 9 and 3, up-regulation of Fas, FasL expression and cell surface trafficking of death ligands (FasL and TRAIL); (2) That exogenous death ligand (TRAIL) enhanced, while soluble death receptor (sDR5) neutralized, stretch-induced apoptosis; (3) Adenovirus-delivered dominant negative FADD (FADD-DN) significantly reduced apoptosis, caspases 8, 9, and 3 activation, and stretch-induced cyt c release from mitochondria. These data clearly suggested mechanical stretch activated death receptor-mediated apoptotic signaling in cardiomyocytes. In conclusion, our data suggest that the FADD-linked death receptor signaling may contribute to stretch-induced cardiomyocyte apoptosis, probably through activating mitochondria-dependent apoptotic signaling.  相似文献   

5.
The assembling of distinct signaling protein complexes at the endoplasmic reticulum (ER) membrane controls several stress responses related to calcium homeostasis, autophagy, ER morphogenesis and protein folding. Diverse pathological conditions interfere with the function of the ER altering protein folding, a condition known as “ER stress”. Adaptation to ER stress depends on the activation of the unfolded protein response (UPR) and protein degradation pathways such as autophagy. Under chronic or irreversible ER stress, cells undergo apoptosis, where the BCL-2 protein family plays a crucial role at the mitochondria to trigger cytochrome c release and apoptosome assembly. Several BCL2 family members also regulate physiological processes at the ER through dynamic interactomes. Here we provide a comprehensive view of the roles of the BCL-2 family of proteins in mediating the molecular crosstalk between the ER and mitochondria to initiate apoptosis, in addition to their emerging functions in adaptation to stress, including autophagy, UPR, calcium homeostasis and organelle morphogenesis. We envision a model where BCL-2-containing complexes may operate as stress rheostats that, beyond their known apoptosis functions at the mitochondria, determine the amplitude and kinetics of adaptive responses against ER-related injuries. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.  相似文献   

6.
《Cellular signalling》2014,26(4):665-672
We previously reported activation of the unfolded protein response (UPR) in P23H rhodopsin (RHO) retinas with autosomal dominant retinitis pigmentosa (ADRP). Knowing that the UPR can trigger Ca2 + release from the endoplasmic reticulum and regulate cellular signaling we examined the level of Ca2 +-regulated proteins. We also looked for changes in the expression of Bcl2 family proteins, autophagy proteins and the mTOR/AKT pathways, as well as for the induction of mitochondria-associated apoptosis in the P23H RHO retina. Our data demonstrated that the elevation of calpain and caspase-12 activity was concomitantly observed with a decrease in the BCL2-XL/BAX ratio and an increase in mTor levels in the P23H-3 RHO retina suggesting a vulnerability of P23H RHO photoreceptors to apoptosis. The translocation of BAX to the mitochondria, as well as the release of cytochrome C and AIF into the cytosol supports this conclusion and indicates the involvement of mitochondria-induced apoptosis in the progression of ADRP. The level of autophagy proteins in general was found to be decreased in the P21–P30 P23H RHO retina. Injections of rapamycin, however, protected the P23H RHO rod photoreceptors from experiencing physiological decline. Despite this fact, the downregulation of mTOR did not alter the level of autophagy proteins. Our results imply that in addition to activation of the UPR during ADRP progression, photoreceptors also experience alterations in major proapoptotic pathways.  相似文献   

7.
A proposed mechanism for the cardiotoxicity of doxorubicin (DOX) involves apoptosis in cardiomyocytes. In the study described here, we investigated the molecular basis for the differences in DOX-induced toxicity in adult rat cardiomyocytes (ARCM), neonatal rat cardiomyocytes (NRCM), and rat embryonic H9c2 cardiomyoblasts. Activation of caspase-9 and -3 was considerably lower in DOX-treated ARCM as compared with NRCM and H9c2 cardiomyoblasts. Addition of cytochrome c caused the activation of caspase-9 and -3 in permeabilized NRCM and H9c2 cardiomyoblasts but not in permeabilized ARCM. Expression of proapoptotic proteins, apoptotic protease activating factor-1 (Apaf1), and procaspase-9 was significantly lower, and abundance of antiapoptotic X-linked inhibitor of apoptosis protein (XIAP) was higher in ARCM, as compared with immature cardiac cells. Despite the abundance of XIAP in ARCM, its role in the inhibition of apoptosome function was dismissed, as second mitochondria-derived activator of caspases (Smac)-N7 peptide, had no effect on caspase activation in response to cytochrome c in these cells. Adenoviral expression of Apaf1 exacerbated the activation of caspase-9 and -3 in DOX-treated NRCM, but did not increase their activities in DOX-treated ARCM. This finding points to a major difference in the apoptotic signaling between immature and adult cardiomyocytes. The mitochondrial apoptotic pathway is limited in ARCM treated with DOX.  相似文献   

8.
9.
Efficient apoptosis requires Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP), which releases death-promoting proteins cytochrome c and Smac to the cytosol, which activate apoptosis and inhibit X-linked inhibitor of apoptosis protein (XIAP) suppression of executioner caspases, respectively. We recently identified that in response to Bcl-2 homology domain 3 (BH3)-only proteins and mitochondrial depolarization, XIAP can permeabilize and enter mitochondria. Consequently, XIAP E3 ligase activity recruits endolysosomes into mitochondria, resulting in Smac degradation. Here, we explored mitochondrial XIAP action within the intrinsic apoptosis signaling pathway. Mechanistically, we demonstrate that mitochondrial XIAP entry requires Bax or Bak and is antagonized by pro-survival Bcl-2 proteins. Moreover, intramitochondrial Smac degradation by XIAP occurs independently of Drp1-regulated cytochrome c release. Importantly, mitochondrial XIAP actions are activated cell-intrinsically by typical apoptosis inducers TNF and staurosporine, and XIAP overexpression reduces the lag time between the administration of an apoptotic stimuli and the onset of mitochondrial permeabilization. To elucidate the role of mitochondrial XIAP action during apoptosis, we integrated our findings within a mathematical model of intrinsic apoptosis signaling. Simulations suggest that moderate increases of XIAP, combined with mitochondrial XIAP preconditioning, would reduce MOMP signaling. To test this scenario, we pre-activated XIAP at mitochondria via mitochondrial depolarization or by artificially targeting XIAP to the intermembrane space. Both approaches resulted in suppression of TNF-mediated caspase activation. Taken together, we propose that XIAP enters mitochondria through a novel mode of mitochondrial permeabilization and through Smac degradation can compete with canonical MOMP to act as an anti-apoptotic tuning mechanism, reducing the mitochondrial contribution to the cellular apoptosis capacity.  相似文献   

10.
A-Kinase anchor proteins (AKAPs) immobilize and concentrate protein kinase A (PKA) isoforms at specific subcellular compartments. Intracellular targeting of PKA holoenzyme elicits rapid and efficient phosphorylation of target proteins, thereby increasing sensitivity of downstream effectors to cAMP action. AKAP121 targets PKA to the cytoplasmic surface of mitochondria. Here we show that conditional expression of AKAP121 in PC12 cells selectively enhances cAMP.PKA signaling to mitochondria. AKAP121 induction stimulates PKA-dependent phosphorylation of the proapoptotic protein BAD at Ser(155), inhibits release of cytochrome c from mitochondria, and protects cells from apoptosis. An AKAP121 derivative mutant that localizes on mitochondria but does not bind PKA down-regulates PKA signaling to the mitochondria and promotes apoptosis. These findings indicate that PKA anchored by AKAP121 transduces cAMP signals to the mitochondria, and it may play an important role in mitochondrial physiology.  相似文献   

11.
Two major intracellular apoptosis signaling cascades have been characterized, the mitochondrial pathway and the death receptor pathway. The mitochondrial pathway is regulated by members of the Bcl-2 protein family. The members of this family can be subdivided into anti- and pro-apoptotic proteins. The pro-apoptotic members are further divided into two groups, the multidomain and the 'BH3 domain only' proteins. When cells are exposed to apoptotic stimulation, pro-apoptotic proteins are activated through post-translational modifications or changes in their conformation. The main site of action of the multidomain proteins are the mitochondria, where these proteins induce permeabilization of the outer membrane resulting in the release of proteins, including cytochrome c, from the intermembrane space. In the cytosol cytochrome c activates caspase cascades ultimately leading to cell death. Mounting evidence indicates that apoptosis is involved in a wide range of pathological conditions. Recent studies suggest that the mitochondrial signaling pathway is involved in several diseases. Although, so far, with the exception of C. elegans, most studies on apoptosis have been performed in mammalian systems, recently homologues to the Bcl-2 family members, including pro-apoptotic members, have been identified in Drosophila and zebrafish. Here the structure and function of the various pro-apoptotic Bcl-2 family members, their effects on mitochondria, and their involvement in diseases are discussed.  相似文献   

12.
Protein disulfide isomerase (PDI) family proteins are classified as enzymatic chaperones for reconstructing misfolded proteins. Previous studies have shown that several PDI members possess potential proapoptotic functions. However, the detailed molecular mechanisms of PDI-mediated apoptosis are not completely known. In this study, we investigated how two members of PDI family, PDI and PDIA3, modulate apoptotic signaling. Inhibiting PDI and PDIA3 activities pharmacologically alleviates apoptosis induced by various apoptotic stimuli. Although a decrease of PDIA3 expression alleviates apoptotic responses, overexpression of PDIA3 exacerbates apoptotic signaling. Importantly, Bak, but not Bax, is essential for PDIA3-induced proapoptotic signaling. Furthermore, both purified PDI and PDIA3 proteins induce Bak-dependent, but not Bax-dependent, mitochondrial outer membrane permeabilization in vitro, probably through triggering Bak oligomerization on mitochondria. Our results suggest that both of PDI and PDIA3 possess Bak-dependent proapoptotic function through inducing mitochondrial outer membrane permeabilization, which provides a new mechanism linking ER chaperone proteins and apoptotic signaling.  相似文献   

13.
Oxidative stress has a well-established role in numerous intracellular signaling pathways, including apoptosis. Glutathione is an important cellular antioxidant and is the most abundant low molecular weight thiol in the cell. Although previous work has shown a link between glutathione and apoptosis, this relationship has not been defined in skeletal muscle. The present investigation examined the effect of glutathione depletion on skeletal muscle apoptotic signaling, and mitochondrial apoptotic-susceptibility. Administration of l-buthionine-[S,R]-sulfoximine (BSO; 30 mM in drinking water for 10 days) caused glutathione depletion in whole muscle and isolated mitochondria, as well as elevated muscle catalase protein content and reactive oxygen species (ROS) generation. Glutathione depletion was associated with elevated DNA fragmentation, mitochondrial Bax levels, Poly(ADP-ribose) polymerase (PARP) cleavage, and calpain activity; however, caspase-3, -8, and -9 activity were not altered. BSO administration was also associated with higher cytosolic and nuclear protein levels of apoptosis-inducing factor (AIF), but not cytochrome c, second mitochondria-derived activator of caspase (Smac), or endonuclease G (EndoG). In addition, isolated mitochondria from BSO animals demonstrated significantly lower membrane potential, increased Ca2+-induced permeability transition pore opening, and greater basal and ROS-induced AIF and cytochrome c release. These results demonstrate that glutathione depletion in skeletal muscle increases caspase-independent signaling, as well as augments mitochondrial-associated apoptotic events to subsequent cell death stimuli.  相似文献   

14.
alpha-Tocopheryl succinate (alpha-TOS) is a semisynthetic vitamin E analogue with high pro-apoptotic and anti-neoplastic activity [Weber, T et al. (2002) Clin. Cancer Res. 8, 863-869]. Previous studies suggested that it acts through destabilization of subcellular organelles, including mitochondria, but compelling evidence is missing. Cells treated with alpha-TOS showed altered mitochondrial structure, generation of free radicals, activation of the sphingomyelin cycle, relocalization of cytochrome c and Smac/Diablo, and activation of multiple caspases. A pan-caspase inhibitor suppressed caspase-3 and -6 activation and phosphatidyl serine externalization, but not decrease of mitochondrial membrane potential or generation of radicals. For alpha-TOS, but not Fas or TRAIL, apoptosis was suppressed by caspase-9 inhibition, while TRAIL- and Fas-resistant cells overexpressing cFLIP or CrmA were susceptible to alpha-TOS. The central role of mitochondria was confirmed by resistance of mtDNA-deficient cells to alpha-TOS, by regulation of alpha-TOS apoptosis by Bcl-2 family members, and by anti-apoptotic activity of mitochondrially targeted radical scavengers. Co-treatment with alpha-TOS and anti-Fas IgM showed their cooperative effect, probably by signaling via different, convergent pathways. These data provide an insight into the molecular mechanism, by which alpha-TOS kills malignant cells, and advocate its testing as a potential anticancer agent or adjuvant.  相似文献   

15.

Aims

The molecular mechanism(s) by which extracellular signal-regulated kinase 1/2 (ERK1/2) and other kinases communicate with downstream targets have not been fully determined. Multiprotein signaling complexes undergoing spatiotemporal redistribution may enhance their interaction with effector proteins promoting cardioprotective response. Particularly, it has been proposed that some active kinases in association with caveolae may converge into mitochondria. Therefore, in this study we investigate if PHO-ERK1/2 interaction with mitochondria may provide a mechanistic link in the regulation of these organelles in cardioprotective signaling.

Main methods

Using a model of dilated cardiomyopathy followed by ischemia–reperfusion injury, we determined ERK1/2 signaling at the level of mitochondria and evaluated its effect on the permeability transition pore.

Key findings

The most important finding of the present study is that, under cardioprotective conditions, a subpopulation of activated ERK1/2 was directed to the mitochondrial membranes through vesicular trafficking, concurring with increased phosphorylation of mitochondrial proteins and inhibition of the mitochondrial permeability transition pore opening. In addition, our results suggest that vesicles enriched with caveolin-3 could form structures that may drive ERK1/2, GSK3β and Akt to mitochondria.

Significance

Signaling complexes including PHO-ERK, PHO-Akt, PHO-eNOS and caveolin-3 contribute to cardioprotection by directly targeting the mitochondrial proteome and regulating the opening of the permeability transition pore in this model.  相似文献   

16.
Abstract

In this study, novel thiosemicarbazides and 1,3,4-oxadiazoles were synthesized and evaluated for their anticancer effects on human MCF-7 breast cancer cell lines. Among the synthesized derivatives studied, compound 2-(3-(4-chlorophenyl)-3-hydroxybutanoyl)-N-phenylhydrazinecarbothioamide 4c showed the highest cytotoxicity against MCF-7 breast cancer cells as it reduced cell viability to approximately 15% compared to approximately 25% in normal breast epithelial cells. Therefore, we focused on 4c for further investigations. Our data showed that 4c induced apoptosis in MCF-7 cells which was further confirmed by TUNEL assay. Western blotting analysis showed that compound 4c up-regulated the pro-survival proteins Bax, Bad and ERK1/2, while it down-regulated anti-apoptotic proteins Bcl-2, Akt and STAT-3. Additionally, 4c induced phosphorylation of SAPK/JNK in MCF-7 cells. Pretreatment of MCF-7 cells with 10?µM of JNK inhibitor significantly reduced 4c-induced apoptosis. Molecular docking results suggested that compound 4c showed a binding pattern close to the pattern observed in the structure of the lead fragment bound to JNK1. Collectively, the data of current study suggested that the thiosemicarbazide 4c might trigger apoptosis in human MCF-7 cells by targeting JNK signaling.  相似文献   

17.
We have further examined the mechanism by which phorbol ester-mediated protein kinase C (PKC) activation protects against tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced cytotoxicity. We now report that activation of PKC targets death receptor signaling complex formation. Pre-treatment with 12-O-tetradecanoylphorbol-13-acetate (PMA) led to inhibition of TRAIL-induced apoptosis in HeLa cells, which was characterized by a reduction in phosphatidylserine (PS) externalization, decreased caspase-8 processing, and incomplete maturation and activation of caspase-3. These effects of PMA were completely abrogated by the PKC inhibitor, bisindolylmaleimide I (Bis I), clearly implicating PKC in the protective effect of PMA. TRAIL-induced mitochondrial release of the apoptosis mediators cytochrome c and Smac was blocked by PMA. This, together with the observed decrease in Bid cleavage, suggested that PKC activation modulates apical events in TRAIL signaling upstream of mitochondria. This was confirmed by analysis of TRAIL death-inducing signaling complex formation, which was disrupted in PMA-treated cells as evidenced by a marked reduction in Fas-associated death domain protein (FADD) recruitment, an effect that could not be explained by any change in FADD phosphorylation state. In an in vitro binding assay, the intracellular domains of both TRAIL-R1 and TRAIL-R2 bound FADD: activation of PKC significantly inhibited this interaction suggesting that PKC may be targeting key apical components of death receptor signaling. Significantly, this effect was not confined to TRAIL, because isolation of the native TNF receptor signaling complex revealed that PKC activation also inhibited TNF receptor-associated death domain protein recruitment to TNF-R1 and TNF-induced phosphorylation of IkappaB-alpha. Taken together, these results show that PKC activation specifically inhibits the recruitment of key obligatory death domain-containing adaptor proteins to their respective membrane-associated signaling complexes, thereby modulating TRAIL-induced apoptosis and TNF-induced NF-kappaB activation, respectively.  相似文献   

18.
A cardinal feature of brain tissue injury in stroke is mitochondrial dysfunction leading to cell death, yet remarkably little is known about the mechanisms underlying mitochondrial injury in cerebral ischemia/reperfusion (IR). Ceramide, a naturally occurring membrane sphingolipid, functions as an important second messenger in apoptosis signaling and is generated by de novo synthesis, sphingomyelin hydrolysis, or recycling of sphingolipids. In this study, cerebral IR-induced ceramide elevation resulted from ceramide biosynthesis rather than from hydrolysis of sphingomyelin. Investigation of intracellular sites of ceramide accumulation revealed the elevation of ceramide in mitochondria because of activation of mitochondrial ceramide synthase via post-translational mechanisms. Furthermore, ceramide accumulation appears to cause mitochondrial respiratory chain damage that could be mimicked by exogenously added natural ceramide to mitochondria. The effect of ceramide on mitochondria was somewhat specific; dihydroceramide, a structure closely related to ceramide, did not inflict damage. Stimulation of ceramide biosynthesis seems to be under control of JNK3 signaling: IR-induced ceramide generation and respiratory chain damage was abolished in mitochondria of JNK3-deficient mice, which exhibited reduced infarct volume after IR. These studies suggest that the hallmark of mitochondrial injury in cerebral IR, respiratory chain dysfunction, is caused by the accumulation of ceramide via stimulation of ceramide synthase activity in mitochondria, and that JNK3 has a pivotal role in regulation of ceramide biosynthesis in cerebral IR.  相似文献   

19.
《Cellular signalling》2014,26(2):370-382
Mitochondrial Outer Membrane (MOM) Permeabilization (MOMP) is a critical step in the intrinsic pathway of apoptosis and is regulated by the Bcl-2 family of proteins. In vitro studies using cardiolipin-containing liposomes as a MOM model have suggested that a mitochondria-specific phospholipid, cardiolipin, is of crucial importance in MOMP. However, recently it has been found that the MOM contains much less cardiolipin than it is required for liposome permeabilization. Shortly thereafter, several MOM proteins, such as VDAC2, MTCH2, TOM22 and TOM40, have been identified as the Bax, Bak and tBid receptors that are indispensable in MOMP, but the underlying mechanisms are elusive. Here, proapoptotic signaling mediated by these MOM receptors was explored in terms of 3D-structures of interacting proteins using computational modeling. The formation under apoptotic conditions of the TOM40/TOM22/tBid protein complex possessing a fairly high binding affinity towards Bax is predicted, suggesting the recruitment of Bax to mitochondria by this complex in apoptotic cells. Our simulations predict the displacement of Bax from the TOM40/TOM22/tBid/Bax complex by another Bax in auto-catalytic manner and explain, in terms of structure, the tBid-mediated displacement of Bak from the VDAC2/Bak complex. Computational modeling revealed high-affinity binding of Bid to MTCH2 suggesting both a quasi-constitutive residence of Bid in MTCH2-bound state in healthy cells and its caspase-8-mediated cleavage there under apoptotic conditions. Overall, our results provide structural details for important stages of apoptotic signaling mediated by MOM receptors and enrich its mechanistic understanding.  相似文献   

20.
Lipid rafts and mitochondria are promising targets in cancer therapy. The synthetic antitumor alkyl-lysophospholipid analog edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) has been reported to target lipid rafts. Here, we have found that edelfosine induced loss of mitochondrial membrane potential and apoptosis in human cervical carcinoma HeLa cells, both responses being abrogated by Bcl-xL overexpression. We synthesized a number of new fluorescent edelfosine analogs, which preserved the proapoptotic activity of the parent drug, and colocalized with mitochondria in HeLa cells. Edelfosine induced swelling in isolated mitochondria, indicating an increase in mitochondrial membrane permeability. This mitochondrial swelling was independent of reactive oxygen species generation. A structurally related inactive analog was unable to promote mitochondrial swelling, highlighting the importance of edelfosine molecular structure in its effect on mitochondria. Raft disruption inhibited mitochondrial localization of the drug in cells and edelfosine-induced swelling in isolated mitochondria. Edelfosine promoted a redistribution of lipid rafts from the plasma membrane to mitochondria, suggesting a raft-mediated link between plasma membrane and mitochondria. Our data suggest that direct interaction of edelfosine with mitochondria eventually leads to mitochondrial dysfunction and apoptosis. These observations unveil a new framework in cancer chemotherapy that involves a link between lipid rafts and mitochondria in the mechanism of action of an antitumor drug, thus opening new avenues for cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号