首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trees, shrubs, lianas and herbs have widely different mechanical architectures, which can also vary phenotypically with the environment. This review investigates how environmental effects, particularly mechanical perturbation, can influence biomechanical development in self-supporting and climbing growth forms. The bifacial vascular cambium is discussed in terms of its significance to growth form variation, ecology and evolution among extant plants, and during its appearance and early evolution. A key aspect of this developmental innovation concerned its potential for architectural and mechanical variation in response to environmental effects as well as optimizing hydraulic supply before the appearance of laminate leaves. Growth form diversity and its importance to past and present ecosystems are discussed in relation to both evolutionary constraints and ecological factors such as climatic change and atmospheric CO2 concentrations. We discuss how widely ranging growth forms such as climbers show a large range of developmental and phenotypic variation that has much to offer in understanding how the environment can modify plant development, particularly in terms of the bifacial vascular cambium. The broad approach we propose would benefit a wide range of studies from research into wood development to long-term ecological censuses of today's potentially changing ecosystems.  相似文献   

2.
The Chikungunya threat: an ecological and evolutionary perspective   总被引:3,自引:0,他引:3  
Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus. Although primarily African and zoonotic, it is known chiefly for its non-African large urban outbreaks during which it is transmitted by the same vectors as those of Dengue viruses. Unlike Dengue viruses, CHIKV displays a re-emergence pattern that closely depends on long-distance migrations including recent re-immigrations from African (putatively zoonotic) sources. Genus-based differences also emerged when comparing the evolution of Dengue-related (Flaviviruses) and of CHIKV-related (Alphaviruses) arboviruses. In this review, we discuss current information on CHIKV genetics, ecology and human infection. Further investigations on African CHIKV ecology and the differences between Flavivirus and Alphavirus members in adaptive changes and evolutionary constraints are likely to help delineate the potential of further CHIKV (re-)emergence.  相似文献   

3.
4.
Assessment of the distribution and diversity of free-living protists is currently hampered by a limited taxonomic resolution of major phyla and by neglecting the significance of spatial and temporal scaling for speciation. There is a tremendous physiological and ecological diversity that is hidden at the morphological level and not apparent at the level of conserved genes. A conceptual framework linking the various levels of diversity is lacking. Neutral genetic markers are useful indicators of population structure and gene flow between populations, but do not explain adaptation to local habitat conditions. The correspondence between protein-coding genes, ecophysiological performance, and fitness needs to be explored under natural conditions. The area and the associated typical temporal dimension of active cells (their ‘home range’) are much smaller, respectively shorter, than the area and time period potentially covered during passive dispersal of protist resting stages. The assumptions that dispersal rates are generally high in free-living protists and that extinction of local populations is, therefore, infinitesimally small wait rigorous testing. Gene flow may be uncoupled largely from dispersal, because local adaptation and numerical effects of residents may strongly reduce or even prevent successful invasion (immigration). The significance of clonal selection depends on the as yet unknown frequency and timing of sexual reproduction, and on the stability of the environment. The extent of local adaptation and the fitness-related ecophysiological divergence are critical for the speciation process and, hence, for defining protist species. Special Issue: Protist diversity and geographic distribution. Guest editor: W. Foissner.  相似文献   

5.
Marriage is universal, and pair bonding is found in other species too with highly dependent young. So marriage functions as a reproductive social arrangement that traditionally involved the extended family. The sexes are not identical in their biological contributions to children's survival, so they seek somewhat different attributes in a mate. Men seek a young, attractive, sexually faithful bride. Women seek a man who is older, taller, and (as in many other species) socially dominant. Both sexes prefer a kind, healthy, attractive, similar mate who is emotionally attached to them. A spouse who fails to maintain sufficiently high mate value is vulnerable to divorce. Infertility and sexual dissatisfaction predict divorce, as does death of a child, but the more children, the stabler the marriage. Cross-cultural data suggest that cruel or subdominant men (e.g., poor providers) and unfaithful women are prone to divorce. Marriages in which the wife dominates the husband in economic contributions, nonverbal behavior, and decision making tend to be less satisfying. In societies in which wives are economically independent of husbands, divorce rates are high. As women's economic power has risen with industrialization, divorce rates have climbed. Economic and fitness considerations also help explain cultural differences in polygyny, age at marriage, arranged marriage, concern with the bride's sexual chastity, and marriage ceremonies. Other factors also affect marital dynamics, such as state subsidies to families, the sex ratio, and influence of the couple's parents.  相似文献   

6.
Karasik D 《Human genetics》2008,124(4):349-356
Increased life expectancy has led to an overall aging of the population and greater numbers of elderly people. Therefore, the number of people with osteoporosis has increased substantially, accompanied with an epidemic of hip fractures. Osteoporosis is an age-related systemic condition that naturally occurs, among mammals, only in humans. Osteoporosis is known to be highly heritable. However, assuming a genetic determinant for this post-reproductive disease to be transmitted from one generation to the next is counter-intuitive, based on the principles of human evolution, I will attempt to provide an explanation of the phenomenon from the point of view of evolution, selection, and changed environment in humans, which contributed to human longevity, while on other hand, contribute to diseases of civilization, including osteoporosis. There is a need to delve into evolution of human species in search for adaptive patterns to a specific environment that humans are operating in the last couple of millennia, to clarify whether “good” and “bad” genes exist, and how to find and correct them. The answer to the above questions will help us to identify causes of the current epidemic of osteoporosis and to pin-point a tailored treatment.  相似文献   

7.
Studies in both prion-due diseases in mammals and some non-Mendelian hereditary processes in yeasts have demonstrated that certain proteins are able to transmit structural information and self-replication. This induces the corresponding conformational changes in other proteins with identical or similar sequences. This ability of proteins may have been very useful during prebiotic chemical evolution, prior to the establishment of the genetic code. During this stage, proteins (proteinoids) must have molded and selected their structural folding units through direct interaction with the environment. The proteinoids that acquired the ability to propagate their conformations (which we refer to as conformons) would have acted as reservoirs and transmitters of a given structural information and hence could have acted as selectors for conformational changes. Despite the great advantage that arose from the establishment of the genetic code, the ability to propagate conformational changes did not necessarily disappear. Depending on the degree of involvement of this capacity in biological evolution, we propose two not mutually exclusive hypotheses: (i) extant prions could be an atavism of ancestral conformons, which would have co-evolved with cells, and (ii) the evolution of conformons would have produced cellular proteins, able to transmit structural information, and, in some cases, participating in certain processes of regulation and epigenesis. Therefore, prions could also be seen as conformons of a conventional infectious agent (or one that co-evolved with it independently) that, after a longer or shorter adaptive period, would have interacted with conformons from the host cells.  相似文献   

8.
Harris SD 《Fungal biology》2011,115(6):475-484
Two modes of cellular morphogenesis predominate within the fungal kingdom; yeast growth and hyphal growth. The availability of complete genome sequences that span the kingdom has made possible the use of comparative approaches that address important questions regarding the evolution of these growth modes. These comparisons have also emphasized the point that not all hyphae are the same despite outward appearances. Topics considered here include the origins of hyphal growth, as well as the potential causes of and the consequences resulting from the loss of hyphal growth in yeast lineages. The mechanisms that enable distinct morphological outputs (i.e., yeast vs. hyphae) using an essentially identical inventory of gene products are also considered. Finally, processes implicated in the regulation of hyphal tip complexes are addressed from an evolutionary perspective.  相似文献   

9.
Behavioral syndromes: an ecological and evolutionary overview   总被引:32,自引:0,他引:32  
Recent studies suggest that populations and species often exhibit behavioral syndromes; that is, suites of correlated behaviors across situations. An example is an aggression syndrome where some individuals are more aggressive, whereas others are less aggressive across a range of situations and contexts. The existence of behavioral syndromes focuses the attention of behavioral ecologists on limited (less than optimal) behavioral plasticity and behavioral carryovers across situations, rather than on optimal plasticity in each isolated situation. Behavioral syndromes can explain behaviors that appear strikingly non-adaptive in an isolated context (e.g. inappropriately high activity when predators are present, or excessive sexual cannibalism). Behavioral syndromes can also help to explain the maintenance of individual variation in behavioral types, a phenomenon that is ubiquitous, but often ignored. Recent studies suggest that the behavioral type of an individual, population or species can have important ecological and evolutionary implications, including major effects on species distributions, on the relative tendencies of species to be invasive or to respond well to environmental change, and on speciation rates. Although most studies of behavioral syndromes to date have focused on a few organisms, mainly in the laboratory, further work on other species, particularly in the field, should yield numerous new insights.  相似文献   

10.
Schizophrenia in an evolutionary perspective   总被引:2,自引:0,他引:2  
  相似文献   

11.
The importance of warfare for human evolution is hotly debated in anthropology. Some authors hypothesize that warfare emerged at least 200,000–100,000 years BP, was frequent, and significantly shaped human social evolution. Other authors claim that warfare is a recent phenomenon, linked to the emergence of agriculture, and mostly explained by cultural rather than evolutionary forces. Here I highlight and critically evaluate six controversial points on the evolutionary bases of warfare. I argue that cultural and evolutionary explanations on the emergence of warfare are not alternative but analyze biological diversity at two distinct levels. An evolved propensity to act aggressively toward outgroup individuals may emerge irrespective of whether warfare appeared early/late during human evolution. Finally, I argue that lethal violence and aggression toward outgroup individuals are two linked but distinct phenomena, and that war and peace are complementary and should not always be treated as two mutually exclusive behavioral responses.  相似文献   

12.
Determining the relationships between environmental variables and genetic diversity is critical to understand the processes that drive evolution in species-contact areas. We employed a combination of modeling approaches and multivariate statistical analyses to analyze mtDNA diversity in a hybrid zone between two evolutionary lineages of honeybees in order to interpret the microevolutionary processes that led to the observed spatial pattern of diversity. The model located the west European honeybee lineage mainly across temperate areas characterized by mild winters and high water availability throughout the year, whereas the African lineage was mainly associated with warmer and drier areas. Selection could be playing an important role in shaping the life history evolution, particularly affecting the mitochondria, and also resulting in hitchhiking effects on particular regions of the mitochondrial genome.  相似文献   

13.
Fitness varies nonlinearly with environmental variables such as temperature, water availability, and nutrition, with maximum fitness at intermediate levels between more stressful extremes. For environmental agents that are highly toxic at exposures that substantially exceed background levels, fitness is maximized at concentrations near zero--a phenomenon often referred to as hormesis. Two main components are suggested: (1) background hormesis, which derives from the direct adaptation of organisms to their habitats; and (2) stress-derived hormonesis, which derives from metabolic reserves that are maintained as an adaptation to environmental stresses through evolutionary time. These reserves provide protection from lesser correlated stresses. This article discusses illustrative examples, including ethanol and ionizing radiation, aimed at placing hormesis into an ecological and evolutionary context. A unifying approach comes from fitness-stress continua that underlie responses to abiotic variables, whereby selection for maximum metabolic efficiency and hence fitness in adaptation to habitats in nature underlies hormetic zones. Within this reductionist model, more specific metabolic mechanisms to explain hormesis are beginning to emerge, depending upon the agent and the taxon in question. Some limited research possibilities based upon this evolutionary perspective are indicated.  相似文献   

14.
15.
Niche division and abundance: an evolutionary perspective   总被引:1,自引:0,他引:1  
 In recent years, biodiversity has become an issue of broad academic interest, and its assessment and maintenance are now recognized as an important area of ecological research. While the concept of biodiversity encompasses, first and foremost, the total number of species co-occurring in a locality, it has increasingly been realized that information on the relative abundances of co-occurring species is also required for a better understanding of the patterns and dynamics of biodiversity. In many areas of ecological research, “abundance” constitutes a key variable that characterizes populations and communities. The relative abundances of species in natural communities reflect evolutionary and contemporary processes occurring on different spatiotemporal scales. The idea of niche apportionment has been developed to provide an integrated conceptual framework for the study of species abundance patterns in communities. This article reviews a number of important issues surrounding the concept of niche apportionment, including some aspects that have received very little or no consideration in previous ecological literature. The main emphasis here is on possible evolutionary implications and backgrounds. Further, as a universal factor which affects species abundance in one way or another, body size is highlighted and its relationship with abundance (“density–body-size relation”) is considered, referring in particular to a recent comprehensive analysis of freshwater benthic data. Consideration of this and other studies has led to the formulation of the biomass equivalence rule, that suggests the independence of the biomass measure of abundance from body size, which strengthens the logical basis of niche apportionment models. It is suggested that, compared with Hubbell's neutral theory of biodiversity, niche apportionment with the biomass equivalence rule represents a conceptually more sound and widely applicable approach to elucidating species abundance patterns. Received: February 4, 2002 / Accepted: October 25, 2002 Correspondence to:M. Tokeshi  相似文献   

16.
Epigenetic modifications in plants: an evolutionary perspective   总被引:1,自引:0,他引:1  
Plant genomes are modified by an array of epigenetic marks that help regulate plant growth and reproduction. Although plants share many epigenetic features with animals and fungi, some epigenetic marks are unique to plants. In different organisms, the same epigenetic mark can play different roles and/or similar functions can be carried out by different epigenetic marks. Furthermore, while the enzymatic systems responsible for generating or eliminating epigenetic marks are often conserved, there are also cases where they are quite divergent between plants and other organisms. DNA methylation and methylation of histone tails on the lysine 4, 9, and 27 positions are among the best characterized epigenetic marks in both plants and animals. Recent studies have greatly enhanced our knowledge about the pattern of these marks in various genomes and provided insights into how they are established and maintained and how they function. This review focuses on the conservation and divergence of the pathways that mediate these four types of epigenetic marks.  相似文献   

17.
18.
The thesis advanced in this paper is that there are basic social influence strategies and attendant principles that are characteristic of social primates. A model for analyzing and comparing social influence strategies in primates, with particular attention to dominance-seeking strategies, is advanced. The utility of the model is illustrated by reference to studies of social influence strategies in baboons, chimpanzees, and humans. Emphasis is placed on the role of communication as the vehicle for social competence. Speculation is offered about the importance of the evolution of symbolic communication in expanding the repertoire of dominance-seeking strategies in human primates. Paper presented at the XII Congress of the International Primatological Society, Brasilia, Brasil 24–29, July, 1988.  相似文献   

19.
Although chromosome rearrangements (CRs) are central to studies of genome evolution, our understanding of the evolutionary consequences of the early stages of karyotypic differentiation (i.e. polymorphism), especially the non‐meiotic impacts, is surprisingly limited. We review the available data on chromosomal polymorphisms in mammals so as to identify taxa that hold promise for developing a more comprehensive understanding of chromosomal change. In doing so, we address several key questions: (i) to what extent are mammalian karyotypes polymorphic, and what types of rearrangements are principally involved? (ii) Are some mammalian lineages more prone to chromosomal polymorphism than others? More specifically, do (karyotypically) polymorphic mammalian species belong to lineages that are also characterized by past, extensive karyotype repatterning? (iii) How long can chromosomal polymorphisms persist in mammals? We discuss the evolutionary implications of these questions and propose several research avenues that may shed light on the role of chromosome change in the diversification of mammalian populations and species.  相似文献   

20.
Mammalian reproduction: an ecological perspective   总被引:15,自引:0,他引:15  
The objectives of this paper are to organize our concepts about the environmental regulation of reproduction in mammals and to delineate important gaps in our knowledge of this subject. The environmental factors of major importance for mammalian reproduction are food availability, ambient temperature, rainfall, the day/night cycle and a variety of social cues. The synthesis offered here uses as its core the bioenergetic control of reproduction. Thus, for example, annual patterns of breeding are viewed as reflecting primarily the caloric costs of the female's reproductive effort as they relate to the energetic costs and gains associated with her foraging effort. Body size of the female is an important consideration since it is correlated with both potential fat reserves and life span. Variation in nutrient availability may or may not be an important consideration. The evolutionary forces that have shaped the breeding success of males usually are fundamentally different from those acting on females and, by implication, the environmental controls governing reproduction probably also often differ either qualitatively or quantitatively in the two sexes. Mammals often live in habitats where energetic and nutrient challenges vary seasonally, even in the tropics. When seasonal breeding is required, a mammal may use a predictor such as photoperiod or a secondary plant compound to prepare metabolically for reproduction. A reasonable argument can be made, however, that opportunistic breeding, unenforced by a predictor, may be the most prevalent strategy extant among today's mammals. Social cues can have potent modulating actions. They can act either via discrete neural and endocrine pathways to alter specific processes such as ovulation, or they can induce nonspecific emotional states that secondarily affect reproduction. Many major gaps remain in our knowledge about the environmental regulation of mammalian reproduction. For one, we have a paucity of information about the annual patterns of breeding and about the mechanisms controlling these patterns in the most common mammals on the planet-the small to average-sized mammals living in the tropics. We probably have only a shallow conceptualization of the way available energy and nutrients control reproduction and, likewise, we may have only a narrow view of the potential kinds and uses of seasonal predictors. Finally, we have little appreciation of the way environmental cues interact with each other to control reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号