首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
Q Liang  B Fu  F Wu  X Li  Y Yuan  F Zhu 《Journal of virology》2012,86(18):10162-10172
Open reading frame 45 (ORF45) of Kaposi's sarcoma-associated herpesvirus (KSHV) is an immediate-early and tegument protein that plays critical roles in antagonizing host antiviral responses. We have previously shown (Zhu et al, Proc. Natl. Acad. Sci. U. S. A., 99:5573-5578, 2002) that ORF45 suppresses activation of interferon regulatory factor 7 (IRF7), a crucial regulator of type I interferon gene expression, by blocking its virus-induced phosphorylation and nuclear accumulation. We report here further characterization of the mechanisms by which ORF45 inhibits IRF7 phosphorylation. In most cell types, IRF7 is phosphorylated and activated by IKKε and TBK1 after viral infection. We found that phosphorylation of IRF7 on Ser477 and Ser479 by IKKε or TBK1 is inhibited by ORF45. The inhibition is specific to IRF7 because phosphorylation of its close relative IRF3 is not affected by ORF45, implying that ORF45 does not inactivate the kinases directly. In fact, we found that ORF45 is phosphorylated efficiently on Ser41 and Ser162 by IKKε and TBK1. We demonstrated that ORF45 competes with the associated IRF7 and inhibits its phosphorylation by IKKε or TBK1 by acting as an alternative substrate.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
The association of the cyclin D-Cdk (DC) complex with retinoblastoma protein (pRb) is required for the G1-S transition of the cell cycle. Cyclin synthesis, nuclear localization and degradation are control mechanisms for the transition, but regulation of the DC complex nuclear import also contributes to the transition. Analysis of the timing of the G1-S transition in mammalian cell lines revealed acceleration with overexpression of cyclin D2 and Cdk4. Immunolocalization assays revealed that cyclin D2 and Cdk4 formed a complex in the cytoplasm and approached the nucleus. They accumulated on the cytosolic surfaces of the nuclear pores and then were arrested at the nuclear membrane before the nucleus reached a critical size. Finally, the complex was released into the nucleus and colocalized with pRb there, which led to pRb phosphorylation and DNA synthesis. The translocalization depended on the G1-S transition. In contrast, a truncated cyclin D2 that was not able to fully associate with Cdk4 lost the ability for release into the nucleus. This pattern of translocalization suggests a spatial separation of the cyclin D-Cdk complex from pRb and DNA in the nucleus to regulate the G1-S transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号