首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High‐throughput sequencing has revolutionized population and conservation genetics. RAD sequencing methods, such as 2b‐RAD, can be used on species lacking a reference genome. However, transferring protocols across taxa can potentially lead to poor results. We tested two different IIB enzymes (AlfI and CspCI) on two species with different genome sizes (the loggerhead turtle Caretta caretta and the sharpsnout seabream Diplodus puntazzo) to build a set of guidelines to improve 2b‐RAD protocols on non‐model organisms while optimising costs. Good results were obtained even with degraded samples, showing the value of 2b‐RAD in studies with poor DNA quality. However, library quality was found to be a critical parameter on the number of reads and loci obtained for genotyping. Resampling analyses with different number of reads per individual showed a trade‐off between number of loci and number of reads per sample. The resulting accumulation curves can be used as a tool to calculate the number of sequences per individual needed to reach a mean depth ≥20 reads to acquire good genotyping results. Finally, we demonstrated that selective‐base ligation does not affect genomic differentiation between individuals, indicating that this technique can be used in species with large genome sizes to adjust the number of loci to the study scope, to reduce sequencing costs and to maintain suitable sequencing depth for a reliable genotyping without compromising the results. Here, we provide a set of guidelines to improve 2b‐RAD protocols on non‐model organisms with different genome sizes, helping decision‐making for a reliable and cost‐effective genotyping.  相似文献   

2.
Single nucleotide polymorphisms (SNPs) are essential for identifying the genetic mechanisms of complex traits. In the present study, we applied genotyping by genome reducing and sequencing (GGRS) method to construct a 252-plex sequencing library for SNP discovery and genotyping in chicken. The library was successfully sequenced on an Illumina HiSeq 2500 sequencer with a paired-end pattern; approximately 400 million raw reads were generated, and an average of approximately 1.4 million good reads per sample were generated. A total of 91,767 SNPs were identified after strict filtering, and all of the 252 samples and all of the chromosomes were well represented. Compared with the Illumina 60K chicken SNP chip data, approximately 34,131 more SNPs were identified using GGRS, and a higher SNP density was found using GGRS, which could be beneficial for downstream analysis. Using the GGRS method, more than 3528 samples can be sequenced simultaneously, and the cost is reduced to $18 per sample. To the best of our knowledge, this study describes the first report of such highly multiplexed sequencing in chicken, indicating potential applications for genome-wide association and genomic selection in chicken.  相似文献   

3.
Vertebrate whole genome sequence assembly can benefit from a priori knowledge of variability in the target genome, with researchers often selecting highly inbred individuals for sequencing. However, for most species highly inbred research lines are lacking, requiring the use of an outbred individual(s). Here we examined the source DNA [Nicholas inbred (Nici)] of the CHORI-260 turkey bacterial artificial chromosome (BAC) library through analysis of microsatellites and BAC sequences. Heterozygosity of Nici was compared with that of individuals from several breeder lines. Seventy-eight microsatellites were screened for polymorphism in a total of 43 birds, identifying an average individual heterozygosity of 0.39, with Nici at 0.35. Additional loci (total of 147) were examined on a subset of individuals to obtain better genome coverage. The mean heterozygosity for this subset was 0.33 with Nici at 0.31. Examination of approximately 200 kb of genome sequence identified SNPs in the order of one per 200 bp in Nici. These data suggest that the heterozygosity of Nici is comparable to other birds of selected breeder lines and that whole genome sequencing would result in an abundant resource of genome-wide polymorphisms.  相似文献   

4.
微生物全基因组鸟枪法测序   总被引:4,自引:0,他引:4  
罗春清  杨焕明 《遗传》2002,24(3):310-314
全基因组测序主要有二种策略,一种是分级鸟枪法测序,另一种是全基因组鸟枪法测序。微生物是一种十分重要的遗传资源,运用全基因组鸟枪法可以方便、快捷地完成其基因组的测序任务。本文对微生物全基因组鸟枪法测序中文库构建、插入片段的长短比例、反应投入量、拼接以及补洞等问题作了较细致的描述,有些步骤作了举例说明。 Abstract:Two strategies introduced for whole genome sequencing,one is clone by clone method,the other is whole genome shotgun sequencing,for microbes which are very important to us,whole genome shotgun sequencing method is very convenient.In this article we discussed the library construction、long-to-short-ratio of insert,、total number of reads should be sequenced、assembly and gap filling technologies of the whole microbial genome shotgun sequencing method while some examples presented.  相似文献   

5.
Heteroplasmy, the existence of multiple mtDNA types within an individual, has been previously detected by using mostly indirect methods and focusing largely on just the hypervariable segments of the control region. Next-generation sequencing technologies should enable studies of heteroplasmy across the entire mtDNA genome at much higher resolution, because many independent reads are generated for each position. However, the higher error rate associated with these technologies must be taken into consideration to avoid false detection of heteroplasmy. We used simulations and phiX174 sequence data to design criteria for accurate detection of heteroplasmy with the Illumina Genome Analyzer platform, and we used artificial mixtures and replicate data to test and refine the criteria. We then applied these criteria to mtDNA sequence reads for 131 individuals from five Eurasian populations that had been generated via a parallel tagged approach. We identified 37 heteroplasmies at 10% frequency or higher at 34 sites in 32 individuals. The mutational spectrum does not differ between heteroplasmic mutations and polymorphisms in the same individuals, but the relative mutation rate at heteroplasmic mutations is significantly higher than that estimated for all mutable sites in the human mtDNA genome. Moreover, there is also a significant excess of nonsynonymous mutations observed among heteroplasmies, compared to polymorphism data from the same individuals. Both mutation-drift and negative selection influence the fate of heteroplasmies to determine the polymorphism spectrum in humans. With appropriate criteria for avoiding false positives due to sequencing errors, next-generation technologies can provide novel insights into genome-wide aspects of mtDNA heteroplasmy.  相似文献   

6.
Bisulfite sequencing is widely used for analysis of DNA methylation status (i.e., 5-methylcytosine [5mC] vs. cytosine [C]) in CpG-rich or other loci in genomic DNA (gDNA). Such methods typically involve reaction of gDNA with bisulfite followed by polymerase chain reaction (PCR) amplification of specific regions of interest that, overall, converts C→T (thymine) and 5mC→C and then capillary sequencing to measure C versus T composition at CpG sites. Massively parallel sequencing by oligonucleotide ligation and detection (SOLiD) has recently enabled relatively low-cost whole genome sequencing, and it would be highly desirable to apply such massively parallel sequencing to bisulfite-converted whole genomes to determine DNA methylation status of an entire genome, which has heretofore not been reported. As an initial step toward achieving this goal, we have extended our ongoing interest in improving bisulfite conversion sample preparation to include a human genome-wide fragment library for SOliD. The current article features novel use of formamide denaturant during bisulfite conversion of a suitably constructed library directly in a band slice from polyacryamide gel electrophoresis (PAGE). To validate this new protocol for 5mC-protected fragment library conversion, which we refer to as Bis-PAGE, capillary-based size analysis and Sanger sequencing were carried out for individual amplicons derived from single-molecule PCR (smPCR) of randomly selected library fragments. smPCR/Capillary Sanger sequencing of approximately 200 amplicons unambiguously demonstrated greater than 99% C→T conversion. All of these approximately 200 Sanger sequences were analyzed with a previously published web-accessible bioinformatics tool (methBLAST) for mapping to human chromosomes, the results of which indicated random distribution of analyzed fragments across all chromosomes. Although these particular Bis-PAGE conversion and quality control methods were exemplified in the context of a fragment library for SOLiD, the concepts can be generalized to include other genome-wide library constructions intended for DNA methylation analysis by alternative high-throughput or massively parallelized methods that are currently available.  相似文献   

7.
Modern genomic sequencing technologies produce a large amount of data with reduced cost per base; however, this data consists of short reads. This reduction in the size of the reads, compared to those obtained with previous methodologies, presents new challenges, including a need for efficient algorithms for the assembly of genomes from short reads and for resolving repetitions. Additionally after abinitio assembly, curation of the hundreds or thousands of contigs generated by assemblers demands considerable time and computational resources. We developed Simplifier, a stand-alone software that selectively eliminates redundant sequences from the collection of contigs generated by ab initio assembly of genomes. Application of Simplifier to data generated by assembly of the genome of Corynebacterium pseudotuberculosis strain 258 reduced the number of contigs generated by ab initio methods from 8,004 to 5,272, a reduction of 34.14%; in addition, N50 increased from 1 kb to 1.5 kb. Processing the contigs of Escherichia coli DH10B with Simplifier reduced the mate-paired library 17.47% and the fragment library 23.91%. Simplifier removed redundant sequences from datasets produced by assemblers, thereby reducing the effort required for finalization of genome assembly in tests with data from Prokaryotic organisms.

Availability

Simplifier is available at http://www.genoma.ufpa.br/rramos/softwares/simplifier.xhtmlIt requires Sun jdk 6 or higher.  相似文献   

8.
9.
目的:建立新的线粒体基因组DNA杂交捕获探针制备方法并用进行初步应用。方法:通过PCR技术扩增特异线粒体DNA片段,并与生物素偶联,最后与标记磁珠的亲和素混合获得捕获探针。并自行制备的线粒体基因组DNA文库捕获探针与肝癌全基因组测序文库进行液相杂交。分离捕获产物后PCR扩增并进行测序分析。结果:成功建立了线粒体基因组杂交捕获探针制备方法并成功分离线粒体基因组DNA;对测序数据的分析显示:90%以上测序数据来自线粒体基因组DNA,且覆盖率达到100%,且均一性良好。检测到的同质性变异位点数量和异质性变异位点数量与全基因组测序数据产生的结果接近(P=0.9152,P=0.8409)。结论:新方法制备的线粒体基因组DNA杂交捕获探针可以从全基因组文库中高效捕获线粒体基因组DNA测序文库。  相似文献   

10.
Single nucleotide polymorphisms (SNPs) have become the marker of choice for genetic studies in organisms of conservation, commercial or biological interest. Most SNP discovery projects in nonmodel organisms apply a strategy for identifying putative SNPs based on filtering rules that account for random sequencing errors. Here, we analyse data used to develop 4723 novel SNPs for the commercially important deep‐sea fish, orange roughy (Hoplostethus atlanticus), to assess the impact of not accounting for systematic sequencing errors when filtering identified polymorphisms when discovering SNPs. We used SAMtools to identify polymorphisms in a velvet assembly of genomic DNA sequence data from seven individuals. The resulting set of polymorphisms were filtered to minimize ‘bycatch’—polymorphisms caused by sequencing or assembly error. An Illumina Infinium SNP chip was used to genotype a final set of 7714 polymorphisms across 1734 individuals. Five predictors were examined for their effect on the probability of obtaining an assayable SNP: depth of coverage, number of reads that support a variant, polymorphism type (e.g. A/C), strand‐bias and Illumina SNP probe design score. Our results indicate that filtering out systematic sequencing errors could substantially improve the efficiency of SNP discovery. We show that BLASTX can be used as an efficient tool to identify single‐copy genomic regions in the absence of a reference genome. The results have implications for research aiming to identify assayable SNPs and build SNP genotyping assays for nonmodel organisms.  相似文献   

11.
Research in evolutionary biology involving nonmodel organisms is rapidly shifting from using traditional molecular markers such as mtDNA and microsatellites to higher throughput SNP genotyping methodologies to address questions in population genetics, phylogenetics and genetic mapping. Restriction site associated DNA sequencing (RAD sequencing or RADseq) has become an established method for SNP genotyping on Illumina sequencing platforms. Here, we developed a protocol and adapters for double‐digest RAD sequencing for Ion Torrent (Life Technologies; Ion Proton, Ion PGM) semiconductor sequencing. We sequenced thirteen genomic libraries of three different nonmodel vertebrate species on Ion Proton with PI chips: Arctic charr Salvelinus alpinus, European whitefish Coregonus lavaretus and common lizard Zootoca vivipara. This resulted in ~962 million single‐end reads overall and a mean of ~74 million reads per library. We filtered the genomic data using Stacks, a bioinformatic tool to process RAD sequencing data. On average, we obtained ~11 000 polymorphic loci per library of 6–30 individuals. We validate our new method by technical and biological replication, by reconstructing phylogenetic relationships, and using a hybrid genetic cross to track genomic variants. Finally, we discuss the differences between using the different sequencing platforms in the context of RAD sequencing, assessing possible advantages and disadvantages. We show that our protocol can be used for Ion semiconductor sequencing platforms for the rapid and cost‐effective generation of variable and reproducible genetic markers.  相似文献   

12.
We present an initial genomic analysis of the non-symbiotic scleractinian coral Lophelia pertusa, the dominant cold-water reef-building coral species in the North Atlantic Ocean. A significant fraction of the deep sequencing reads was of mitochondrial and microbial origins. SOLiD deep sequencing reads from fragment library experiments of total DNA and PCR amplified mitogenome generated about 21,000 times and 136,000 times coverage, respectively, of the 16,150bp mitogenome. Five polymorphic sites that include two non-synonymous sites in the NADH dehydrogenase subunit 5 genes were detected in both experiments. This observation is surprising since anthozoans in general exhibit very low mtDNA sequence variation at intraspecific level compared to nuclear sequences. More than fifty bacterial species associated with the coral isolate were also sequence detected, representing at least ten complete genomes. Most reads, however, were predicted to originate from the Lophelia nuclear genome.  相似文献   

13.
The integration of a transgene expression construct into the host genome is the initial step for the generation of recombinant cell lines used for biopharmaceutical production. The stability and level of recombinant gene expression in Chinese hamster ovary (CHO) can be correlated to the copy number, its integration site as well as the epigenetic context of the transgene vector. Also, undesired integration events, such as concatemers, truncated, and inverted vector repeats, are impacting the stability of recombinant cell lines. Thus, to characterize cell clones and to isolate the most promising candidates, it is crucial to obtain information on the site of integration, the structure of integrated sequence and the epigenetic status. Current sequencing techniques allow to gather this information separately but do not offer a comprehensive and simultaneous resolution. In this study, we present a fast and robust nanopore Cas9-targeted sequencing (nCats) pipeline to identify integration sites, the composition of the integrated sequence as well as its DNA methylation status in CHO cells that can be obtained simultaneously from the same sequencing run. A Cas9-enrichment step during library preparation enables targeted and directional nanopore sequencing with up to 724× median on-target coverage and up to 153 kb long reads. The data generated by nCats provides sensitive, detailed, and correct information on the transgene integration sites and the expression vector structure, which could only be partly produced by traditional Targeted Locus Amplification-seq data. Moreover, with nCats the DNA methylation status can be analyzed from the same raw data without prior DNA amplification.  相似文献   

14.
Simple sequence repeats (SSRs) are widely used genetic markers in ecology, evolution, and conservation even in the genomics era, while a general limitation to their application is the difficulty of developing polymorphic SSR markers. Next‐generation sequencing (NGS) offers the opportunity for the rapid development of SSRs; however, previous studies developing SSRs using genomic data from only one individual need redundant experiments to test the polymorphisms of SSRs. In this study, we designed a pipeline for the rapid development of polymorphic SSR markers from multi‐sample genomic data. We used bioinformatic software to genotype multiple individuals using resequencing data, detected highly polymorphic SSRs prior to experimental validation, significantly improved the efficiency and reduced the experimental effort. The pipeline was successfully applied to a globally threatened species, the brown eared‐pheasant (Crossoptilon mantchuricum), which showed very low genomic diversity. The 20 newly developed SSR markers were highly polymorphic, the average number of alleles was much higher than the genomic average. We also evaluated the effect of the number of individuals and sequencing depth on the SSR mining results, and we found that 10 individuals and ~10X sequencing data were enough to obtain a sufficient number of polymorphic SSRs, even for species with low genetic diversity. Furthermore, the genome assembly of NGS data from the optimal number of individuals and sequencing depth can be used as an alternative reference genome if a high‐quality genome is not available. Our pipeline provided a paradigm for the application of NGS technology to mining and developing molecular markers for ecological and evolutionary studies.  相似文献   

15.
Whole-genome sequencing and variant discovery in C. elegans   总被引:1,自引:0,他引:1  
Massively parallel sequencing instruments enable rapid and inexpensive DNA sequence data production. Because these instruments are new, their data require characterization with respect to accuracy and utility. To address this, we sequenced a Caernohabditis elegans N2 Bristol strain isolate using the Solexa Sequence Analyzer, and compared the reads to the reference genome to characterize the data and to evaluate coverage and representation. Massively parallel sequencing facilitates strain-to-reference comparison for genome-wide sequence variant discovery. Owing to the short-read-length sequences produced, we developed a revised approach to determine the regions of the genome to which short reads could be uniquely mapped. We then aligned Solexa reads from C. elegans strain CB4858 to the reference, and screened for single-nucleotide polymorphisms (SNPs) and small indels. This study demonstrates the utility of massively parallel short read sequencing for whole genome resequencing and for accurate discovery of genome-wide polymorphisms.  相似文献   

16.
Single nucleotide polymorphisms (SNPs) are essential to the understanding of population genetic variation and diversity. Here, we performed restriction‐site‐associated DNA sequencing (RAD‐seq) on 72 individuals from 13 Chinese indigenous and three introduced chicken breeds. A total of 620 million reads were obtained using an Illumina Hiseq2000 sequencer. An average of 75 587 SNPs were identified from each individual. Further filtering strictly validated 28 895 SNPs candidates for all populations. When compared with the NCBI dbSNP (chicken_9031), 15 404 SNPs were new discoveries. In this study, RAD‐seq was performed for the first time on chickens, implicating the remarkable effectiveness and potential applications on genetic analysis and breeding technique for whole‐genome selection in chicken and other agricultural animals.  相似文献   

17.
Decreasing sequencing costs have driven a rapid expansion of novel genotyping methods. One of these methods is the exploitation of restriction enzyme cut sites to generate genome‐wide but reduced representation sequencing libraries (RRLs), alternatively termed genotyping by sequencing or restriction‐site associated DNA sequencing. Without a reference genome, the resulting short sequence reads must be assembled de novo. There are many possible assembly programs, most not explicitly developed for RRL data, and we know little of their effectiveness. In this issue of Molecular Ecology Resources, LaCava et al. (2020) systematically evaluate six commonly used programs and two commonly varied parameters for complete and accurate assembly of RRLs, using simulated double digests of Homo sapiens and Arabidopsis thaliana genomes with varied mutation rates and types. The authors find substantial variation in performance across assembly programs. The most consistently high‐performing assembler is infrequently used in their literature survey (CD‐HIT; Li and Godzik, 2006), while several others fail to produce complete, accurate assemblies under many conditions. LaCava et al. additionally recommend best practices in parameter choice and evaluation of future assembly programs—advice that molecular ecologists working to assemble sequences of all kinds should take to heart.  相似文献   

18.
Using high throughput sequencing we obtained a large number of microsatellites from Podocnemis lewyana, an endemic turtle from northwestern South America. We used 454 Genome Sequence FLX platform of sheared genomic DNA from randomly sampling approximately 17% of the haploid genome. We identified 86,501 reads (8.1% of all reads) that contained our definition of microsatellite loci. AC and TC were the most abundant motifs in the P. lewyana genome. TGC and AAAC were most abundant tri and tetra-nucleotide motifs respectively. 72.7% of microsatellite reads had flanking sequence regions suitable for primer design and PCR amplification. We validated the identified potentially amplifiable loci (PAL) and tested for polymorphism by selecting 15 loci corresponding to tetranucleotides. Twelve loci showed polymorphism in eight individuals. These findings demonstrates that microsatellite detection using next-generation sequencing is an efficient way of getting a lot of loci for listed taxa and in turn will have a large impact on future genetic studies aiming to understand and implement conservation plans for this highly threatened freshwater turtle.  相似文献   

19.
Next-generation sequencing (NGS) technologies have transformed genomic research and have the potential to revolutionize clinical medicine. However, the background error rates of sequencing instruments and limitations in targeted read coverage have precluded the detection of rare DNA sequence variants by NGS. Here we describe a method, termed CypherSeq, which combines double-stranded barcoding error correction and rolling circle amplification (RCA)-based target enrichment to vastly improve NGS-based rare variant detection. The CypherSeq methodology involves the ligation of sample DNA into circular vectors, which contain double-stranded barcodes for computational error correction and adapters for library preparation and sequencing. CypherSeq is capable of detecting rare mutations genome-wide as well as those within specific target genes via RCA-based enrichment. We demonstrate that CypherSeq is capable of correcting errors incurred during library preparation and sequencing to reproducibly detect mutations down to a frequency of 2.4 × 10−7 per base pair, and report the frequency and spectra of spontaneous and ethyl methanesulfonate-induced mutations across the Saccharomyces cerevisiae genome.  相似文献   

20.
新一代测序技术(NGS)的文库制备方法在基因组的拼装中起着重要作用。但是NGS技术制备的普通DNA文库片段只有500 bp左右,难以满足复杂基因组的从头(de novo)拼装要求。三代测序技术的读长可以达到20 kb,但是其高错误率及测序成本过高使得其又不易推广。因此二代测序的Mate-paired文库制备技术一直在基因组的de novo拼装中扮演着非常重要的角色。目前主流的NGS平台Illumina制备的Mate-paired文库的片段范围只有2~5 kb,为了得到更长的可用于Illumina平台测序的Mate-paired文库,本研究首次整合并优化了Illumina和Roche/454两种测序平台的Mate-paired文库制备技术,采用诱导环化酶来提高基因组长片段DNA的环化效率,成功建立了20 kb Mate-paired文库制备技术,并已将该技术应用于人类基因组20 kb Mate-paired文库制备。该技术为Illumina平台制备长片段Mate-paired库提供了方法指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号