首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reversine has been shown to induce dedifferentiation of C2C12 murine myoblasts into multipotent progenitor cells. However, little is known about the key regulators mediating the dedifferentiation induced by reversine. Here, we show that large scale miRNA gene expression profiling of reversine-treated C2C12 myoblasts identifies a down-regulated miRNA, miR-133a, involved in dedifferentiation of myoblasts. Reversine treatment results in up- and down-regulated miRNA profiles. Among miRNAs affected by reversine, the level of muscle-specific miR-133a, which has been shown to be up-regulated during muscle development and to suppress differentiation into other lineages, is markedly reduced by treatment of C2C12 myoblasts with reversine. In parallel, reversine decreases the expression and recruitment of myogenic factor, SRF, to the enhancer regions of miR-133a. Sequentially, down-regulation of miR-133a by reversine is accompanied by a decrease in active histone modifications including trimethylation of histone H3K4 and H3K36, phosphorylation of H3S10, and acetylation of H3K14 on the miR-133a promoter, leading to dissociation of RNA polymerase II from the promoter. Furthermore, inhibition of miR-133a by transfection of C2C12 myoblasts with miR-133a inhibitor increases the expression of osteogenic lineage marker, Ogn, and adipotenic lineage marker, ApoE, similar to that in response to reversine. In contrast, the co-overexpression of miR-133a mimic reversed the effect of reversine on C2C12 myoblast dedifferentiation. Taken together, the results indicate that reversine induces a multipotency of C2C12 myoblasts by suppression of miR-133a expression through depletion of active histone modifications, and suggest that miR-133a is a potential miRNA regulating the reversine-induced dedifferentiation. Collectively, our findings provide a mechanistic rationale for the application of reversine to dedifferentiation of somatic cells.  相似文献   

2.
Functional reprogramming of a differentiated cell toward pluripotency may have long-term applications in regenerative medicine. We report the induction of dedifferentiation, associated with genomewide programming of gene expression and epigenetic reprogramming of an embryonic gene, in epithelial 293T cells treated with an extract of undifferentiated human NCCIT carcinoma cells. 293T cells exposed for 1 h to extract of NCCIT cells, but not of 293T or Jurkat T-cells, form defined colonies that are maintained for at least 23 passages in culture. Microarray and quantitative analyses of gene expression reveal that the transition from a 293T to a pluripotent cell phenotype involves a dynamic up-regulation of hundreds of NCCIT genes, concomitant with down-regulation of 293T genes and of indicators of differentiation such as A-type lamins. Up-regulated genes encompass embryonic and stem cell markers, including OCT4, SOX2, NANOG, and Oct4-responsive genes. OCT4 activation is associated with DNA demethylation in the OCT4 promoter and nuclear targeting of Oct4 protein. In fibroblasts exposed to extract of mouse embryonic stem cells, Oct4 activation is biphasic and RNA-PolII dependent, with the first transient rise of Oct4 up-regulation being necessary for the second, long-term activation of Oct4. Genes characteristic of multilineage differentiation potential are also up-regulated in NCCIT extract-treated cells, suggesting the establishment of "multilineage priming." Retinoic acid triggers Oct4 down-regulation, de novo activation of A-type lamins, and nestin. Furthermore, the cells can be induced to differentiate toward neurogenic, adipogenic, osteogenic, and endothelial lineages. The data provide a proof-of-concept that an extract of undifferentiated carcinoma cells can elicit differentiation plasticity in an otherwise more developmentally restricted cell type.  相似文献   

3.
Induction of pluripotent stem cells from human fibroblasts has been achieved by the ectopic expression of two different sets of four genes. However, the mechanism of the pluripotent stem cell induction has not been elucidated. Here we identified a marked heterogeneity in colonies generated by the four-gene (Oct3/4, Sox2, c-Myc, and Klf4) transduction method in human neonatal skin-derived cells. The four-gene transduction gave a higher probability of induction for archetypal pluripotent stem cell marker genes (Nanog, TDGF, and Dnmt3b) than for marker genes that are less specific for pluripotent stem cells (CYP26A1 and TERT) in primary induction culture. This tendency may reflect the molecular mechanism underlying the induction of human skin-derived cells into pluripotent stem cells. Among the colonies induced by the four-gene transduction, small cells with a high nucleus-to–cytoplasm ratio could be established by repeated cloning. Subsequently established cell lines were similar to human embryonic stem cells as well as human induced pluripotent stem (iPS) cells derived from adult tissue in morphology, gene expression, long-term self-renewal ability, and teratoma formation. Genome-wide single-nucleotide polymorphism array analysis of the human iPS cell line indicates that the induction process did not induce DNA mutation.  相似文献   

4.
In vitro reprogramming of somatic cells into a pluripotent embryonic stem cell-like state has been achieved through retroviral transduction of murine fibroblasts with Oct4, Sox2, c-myc and Klf4. In these experiments, the rare 'induced pluripotent stem' (iPS) cells were isolated by stringent selection for activation of a neomycin-resistance gene inserted into the endogenous Oct4 (also known as Pou5f1) or Nanog loci. Direct isolation of pluripotent cells from cultured somatic cells is of potential therapeutic interest, but translation to human systems would be hindered by the requirement for transgenic donors in the present iPS isolation protocol. Here we demonstrate that reprogrammed pluripotent cells can be isolated from genetically unmodified somatic donor cells solely based upon morphological criteria.  相似文献   

5.
Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1   总被引:1,自引:0,他引:1  
Moon JH  Heo JS  Kim JS  Jun EK  Lee JH  Kim A  Kim J  Whang KY  Kang YK  Yeo S  Lim HJ  Han DW  Kim DW  Oh S  Yoon BS  Schöler HR  You S 《Cell research》2011,21(9):1305-1315
  相似文献   

6.
7.
8.
Germ cells possess the unique ability to acquire totipotency during development in vivo as well as give rise to pluripotent stem cells under the appropriate conditions in vitro. Recent studies in which somatic cells were experimentally converted into pluripotent stem cells revealed that genes expressed in primordial germ cells (PGCs), such as Oct3/4, Sox2, and Lin28, are involved in this reprogramming. These findings suggest that PGCs may be useful for identifying factors that successfully and efficiently reprogram somatic cells into toti- and/or pluripotent stem cells. Here, we show that Blimp-1, Prdm14, and Prmt5, each of which is crucial for PGC development, have the potential to reprogram somatic cells into pluripotent stem cells. Among them, Prmt5 exhibited remarkable reprogramming of mouse embryonic fibroblasts into which Prmt5, Klf4, and Oct3/4 were introduced. The resulting cells exhibited pluripotent gene expression, teratoma formation, and germline transmission in chimeric mice, all of which were indistinguishable from those induced with embryonic stem cells. These data indicate that some of the factors that play essential roles in germ cell development are also active in somatic cell reprogramming.  相似文献   

9.
The porcine pluripotent cells that can generate germline chimeras have not been developed. The Oct4 promoter-based fluorescent reporter system, which can be used to monitor pluripotency, is an important tool to generate authentic porcine pluripotent cells. In this study, we established a porcine Oct4 reporter system, wherein the endogenous Oct4 promoter directly controls red fluorescent protein (RFP). 2A-tdTomato sequence was inserted to replace the stop codon of the porcine Oct4 gene by homogenous recombination (HR). Thus, the fluorescence can accurately show the activation of endogenous Oct4. Porcine fetal fibroblast (PFF) lines with knock-in (KI) of the tdTomato gene in the downstream of endogenous Oct4 promoter were achieved using the CRISPR/CAS9 system. Transgenic PFFs were used as donor cells for somatic cell nuclear transfer (SCNT). Strong RFP expression was detected in the blastocysts and genital ridges of SCNT fetuses but not in other tissues. Two viable transgenic piglets were also produced by SCNT. Reprogramming of fibroblasts from the fetuses and piglets by another round of SCNT resulted in tdTomato reactivation in reconstructed blastocysts. Result indicated that a KI porcine reporter system to monitor the pluripotent status of cells was successfully developed.  相似文献   

10.
11.
12.
Li Y  Zhang Q  Yin X  Yang W  Du Y  Hou P  Ge J  Liu C  Zhang W  Zhang X  Wu Y  Li H  Liu K  Wu C  Song Z  Zhao Y  Shi Y  Deng H 《Cell research》2011,21(1):196-204
  相似文献   

13.
The dedifferentiation agent "reversine" [2-(4-morpholinoanilino)-N6-cyclohexyladenine 2], which can induce myogenic lineage-committed cells to become multipotent mesenchymal progenitor cells, was discovered by Shuibing Chen et al. in 2003. But its effects on neurons were unknown. Using patch-clamp technique, we found that reversine inhibits spontaneous synaptic transmission in cultured rat hippocampal neurons without influencing the dynamics function of potassium, sodium and calcium channels. This result suggests that reversine may also act as a dedifferentiation agent in neurons, and inhibiting the synaptic transmission maybe the early step of neuronal dedifferentiation.  相似文献   

14.
15.
16.
17.
Takahashi K  Yamanaka S 《Cell》2006,126(4):663-676
Differentiated cells can be reprogrammed to an embryonic-like state by transfer of nuclear contents into oocytes or by fusion with embryonic stem (ES) cells. Little is known about factors that induce this reprogramming. Here, we demonstrate induction of pluripotent stem cells from mouse embryonic or adult fibroblasts by introducing four factors, Oct3/4, Sox2, c-Myc, and Klf4, under ES cell culture conditions. Unexpectedly, Nanog was dispensable. These cells, which we designated iPS (induced pluripotent stem) cells, exhibit the morphology and growth properties of ES cells and express ES cell marker genes. Subcutaneous transplantation of iPS cells into nude mice resulted in tumors containing a variety of tissues from all three germ layers. Following injection into blastocysts, iPS cells contributed to mouse embryonic development. These data demonstrate that pluripotent stem cells can be directly generated from fibroblast cultures by the addition of only a few defined factors.  相似文献   

18.
19.
Embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass (ICM) and the epiblast, and have been suggested to be a homogeneous population with characteristics intermediate between them. These cells express Oct3/4 and Rex1 genes, which have been used as markers to indicate the undifferentiated state of ES cells. Whereas Oct3/4 is expressed in totipotent and pluripotent cells in the mouse life cycle, Rex1 expression is restricted to the ICM, and is downregulated in pluripotent cell populations in the later stages, i.e. the epiblast and primitive ectoderm (PrE). To address whether ES cells comprise a homogeneous population equivalent to a certain developmental stage of pluripotent cells or a heterogeneous population composed of cells corresponding to various stages of differentiation, we established knock-in ES cell lines in which genes for fluorescent proteins were inserted into the Rex1 and Oct3/4 gene loci to visualize the expression of these genes. We found that undifferentiated ES cells included at least two different populations, Rex1(+)/Oct3/4(+) cells and Rex1(-)/Oct3/4(+) cells. The Rex1(-)/Oct3/4(+) and Rex1(+)/Oct3/4(+) populations could convert into each other in the presence of LIF. In accordance with our assumption that Rex1(+)/Oct3/4(+) cells and Rex1(-)/Oct3/4(+) cells have characteristics similar to those of ICM and early-PrE cells, Rex1(+)/Oct3/4(+) cells predominantly differentiated into primitive ectoderm and contributed to chimera formation, whereas Rex1(-)/Oct3/4(+) cells differentiated into cells of the somatic lineage more efficiently than non-fractionated ES cells in vitro and showed poor ability to contribute to chimera formation. These results confirmed that undifferentiated ES cell culture contains subpopulations corresponding to ICM, epiblast and PrE.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号