首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The Shaker locus encodes a family of voltage-gated potassium (K) channels expressed in the central and peripheral nervous system as well as in muscle. Members of the Shaker K-family have variant amino- and carboxy-terminal sequences, which assemble into homo-and hetero-multimeric K-channels. The channels have distinct kinetics of activation and inactivation. Electrophysiological characterization of wild type and mutant K-channels allows to correlate particular domains and critical amino acid residues with receptor sites of open channel blockers such as tetraethyl-ammonium, charybdotoxin and dendrotoxin.  相似文献   

2.
Polyunsaturated Fatty Acid Modulation of Voltage-Gated Ion Channels   总被引:2,自引:0,他引:2  
Arachidonic acid (AA) was found to inhibit the function of whole-cell voltage-gated (VG) calcium currents nearly 16 years ago. There are now numerous examples demonstrating that AA and other polyunsaturated fatty acids (PUFAs) modulate the function of VG ion channels, primarily in neurons and muscle cells. We will review and extract some common features about the modulation by PUFAs of VG calcium, sodium, and potassium channels and discuss the impact of this modulation on the excitability of neurons and cardiac myocytes. We will describe the fatty acid nature of the membrane, how fatty acids become available to function as modulators of VG channels, and the physiologic importance of this type of modulation. We will review the evidence for molecular mechanisms and assess our current understanding of the structural basis for modulation. With guidance from research on the structure of fatty acid binding proteins, the role of lipids in gating mechanosensitive (MS) channels, and the impact of membrane lipid composition on membrane-embedded proteins, we will highlight some avenues for future investigations.  相似文献   

3.
The structure of the Shaker potassium channel has been modeled as passing through the cellular membrane eight times with both the NH2 and COOH termini on the cytoplasmic side (Durrell, S.R., and H.R. Guy. 1992. Biophys. J. 62:238–250). To test the validity of this model, we have inserted an epitope consisting of eight hydrophilic amino acids (DYKDDDDK) in predicted extracellular and intracellular loops throughout the channel. The channels containing the synthetic epitope were expressed in Xenopus oocytes, and function was examined by two-electrode voltage clamping. All of the mutants containing insertions in putative extracellular regions and the NH2 and COOH termini expressed functional channels, and most of their electrophysiological properties were similar to those of the wild-type channel. Immunofluorescent staining with a monoclonal antibody against the epitope was used to determine the membrane localization of the insert in the channels. The data confirm and constrain the model for the transmembrane topology of the voltage-gated potassium channel.  相似文献   

4.
边际  林学政 《生命的化学》2004,24(2):134-136
鱼油的主要成分为二十碳五烯酸和二十二碳六烯酸,这些多不饱和脂肪酸具有多方面的生理活性。近年来在海洋细菌中发现这些多不饱和脂肪酸的存在,海洋细菌很可能是这些多不饱和脂肪酸的原始生产之一。对其生物合成的深入研究表明,海洋细菌多不饱和脂肪酸的合成不同于其他生物的不饱和脂肪酸的合成机制,合成过程中不涉及重要的脂肪酸脱氢和延长机制,其合成由一种多聚乙酰合成酶(PKS)催化。  相似文献   

5.
6.
The aim of this work was to investigate interactions of the human ether-a-go-go channel heag2 with human brain proteins. For this, we used heag2-GST fusion proteins in pull-down assays with brain proteins and mass spectrometry, as well as coimmunoprecipitation. We identified tubulin and heat shock 70 proteins as binding to intracellular C-terminal regions of the channel. To study functional effects, heag2 channels were expressed in Xenopus laevis oocytes for two-electrode voltage clamping. Coexpression of alpha-tubulin or the application of colchicine significantly prolonged channel activation times. Application at different times of colchicine gave similar results. The data suggest that colchicine application and tubulin expression do not affect heag2 trafficking and that tubulin may associate with the channel to cause functional effects. Coexpression of heat shock 70 proteins had no functional effect on the channel. The role of tubulin in the cell cytoskeleton suggests a link for the heag2 channel in tubulin-dependent physiological functions, such as cellular proliferation.  相似文献   

7.
Cloning of the Drosophila Shaker gene established that a neurological phenotype including locomotor dysfunction can be caused by a mutation in a voltage-gated potassium (K) channel gene. Shaker sequences have been used to isolate a large family of related K channel genes from both flies and mammals. Toward elucidating the evolutionary relationship between loci and the potential causal connection that K channels may have to mammalian genetic disorders, we report here the genetic mapping of 12-16 different murine, voltage-gated K channel genes. We find that multiple genes, in some cases from distantly related K channel subfamilies, occur in clusters in the mouse genome. These mapping results suggest that the K channel gene subfamilies arose through ancient localized gene duplication events, followed by chromosomal duplications and rearrangements as well as further gene duplication. We also note that several neurologic disorders of both mouse and human are associated with the chromosomal regions containing K channel genes.  相似文献   

8.
Neurons strictly regulate expression of a wide variety of voltage-dependent ion channels in their surface membranes to achieve precise yet dynamic control of intrinsic membrane excitability. Neurons also exhibit extreme morphological complexity that underlies diverse aspects of their function. Most ion channels are preferentially targeted to either the axonal or somatodendritic compartments, where they become further localized to discrete membrane subdomains. This restricted accumulation of ion channels enables local control of membrane signaling events in specific microdomains of a given compartment. Voltage-dependent K+ (Kv) channels act as potent modulators of diverse excitatory events such as action potentials, excitatory synaptic potentials, and Ca2+ influx. Kv channels exhibit diverse patterns of cellular expression, and distinct subtype-specific localization, in mammalian central neurons. Here we review the mechanisms regulating the abundance and distribution of Kv channels in mammalian neurons and discuss how dynamic regulation of these events impacts neuronal signaling.  相似文献   

9.
多不饱和脂肪酸具有包括离子通道在内的众多作用靶点,通过作用于这些靶点,可以有效保护免疫系统、神经系统和心血管系统的功能,在一定程度上保护人体健康。电压门控钾离子通道家族KV7通道和大电导钙离子激活的钾离子通道(BKCa)广泛表达于机体的各类组织中,具有重要的生理或病理功能。本综述围绕KV7和BKCa通道,根据对已有报道的汇总,多不饱和脂肪酸可以增大KV7和BKCa通道的电流幅值,其中对KV7通道电流的影响主要是改变其电压依赖特性和最大电导值,而对BKCa通道电流的影响主要是改变其孔道区域关闭态的构象。此外,多不饱和脂肪酸对KV7和BKCa通道功能的调节也会受到共表达的辅助亚基影响,但相关机制有待进一步阐明。深入理解多不饱和脂肪酸对KV7和BKCa通道调节作用效果和分子机制,有助于全面理解KV7和BK  相似文献   

10.
Synthesized PCs containing docosahexaenoic acid (DHA), arachidonic acid (AA), linoleic acid (LA), and palmitic acid (PA) at known positions in the glycerol moiety were oxidized in liposomes, bulk, and organic solvent. In bulk and organic solvent, the oxidative stability of PC decreased with increasing degrees of unsaturation. However, the degree of unsaturation had little effect on the stability of PC in liposomes. The oxidative stability of PC in liposomes would be affected by the chemical reactivity based on the degree of unsaturation and by the conformation of fatty acyl component in PC bilayers. When the oxidative stability of 1-PA-2-LA-PC or 1-PA-2-AA-PC was compared with that of a 1:1 (mol ratio) mixture of 1,2-diPA-PC+1,2-diLA-PC, or 1,2-diPA-PC+1,2-diAA-PC, respectively, the former PC was more oxidatively stable than that of the latter PC mixture in all oxidation systems, although the degree of unsaturation of 1-PA-2-PUFA-PC was the same as that of the corresponding mixture of diPA-PC+diPUFA-PC. The higher oxidative stability of 1-PA-2-PUFA-PC than that of a corresponding mixture of diPA-PC+diPUFA-PC in liposomes was suggested to be due to the different conformation of PC bilayers and the different rate of hydrogen abstraction by free radicals from intermolecular and intramolecular acyl groups.  相似文献   

11.
Voltage-sensing domains (VSDs) are membrane protein modules found in ion channels and enzymes that are responsible for a large number of fundamental biological tasks, such as neuronal electrical activity. The VSDs switch from a resting to an active conformation upon membrane depolarization, altering the activity of the protein in response to voltage changes. Interestingly, numerous studies describe the existence of a third distinct state, called the relaxed state, also populated at positive potentials. Although some physiological roles for the relaxed state have been suggested, little is known about the molecular determinants responsible for the development and modulation of VSD relaxation. Several lines of evidence have suggested that the linker (S3-S4 linker) between the third (S3) and fourth (S4) transmembrane segments of the VSD alters the equilibrium between resting and active conformations. By measuring gating currents from the Shaker potassium channel, we demonstrate here that shortening the S3-S4 linker stabilizes the relaxed state, whereas lengthening the linker or splitting it and coinjecting two fragments of the channel have little effect. We propose that natural variations of the length of the S3-S4 linker in various VSD-containing proteins may produce differential VSD relaxation in vivo.  相似文献   

12.
Voltage-sensing domains (VSDs) are membrane protein modules found in ion channels and enzymes that are responsible for a large number of fundamental biological tasks, such as neuronal electrical activity. The VSDs switch from a resting to an active conformation upon membrane depolarization, altering the activity of the protein in response to voltage changes. Interestingly, numerous studies describe the existence of a third distinct state, called the relaxed state, also populated at positive potentials. Although some physiological roles for the relaxed state have been suggested, little is known about the molecular determinants responsible for the development and modulation of VSD relaxation. Several lines of evidence have suggested that the linker (S3-S4 linker) between the third (S3) and fourth (S4) transmembrane segments of the VSD alters the equilibrium between resting and active conformations. By measuring gating currents from the Shaker potassium channel, we demonstrate here that shortening the S3-S4 linker stabilizes the relaxed state, whereas lengthening the linker or splitting it and coinjecting two fragments of the channel have little effect. We propose that natural variations of the length of the S3-S4 linker in various VSD-containing proteins may produce differential VSD relaxation in vivo.  相似文献   

13.
A ketogenic diet is an alternative treatment of epilepsy in infants. The diet, rich in fat and low in carbohydrates, elevates the level of polyunsaturated fatty acids (PUFAs) in plasma. These substances have therefore been suggested to contribute to the anticonvulsive effect of the diet. PUFAs modulate the properties of a range of ion channels, including K and Na channels, and it has been hypothesized that these changes may be part of a mechanistic explanation of the ketogenic diet. Using computational modelling, we here study how experimentally observed PUFA-induced changes of ion channel activity affect neuronal excitability in CA1, in particular responses to synaptic input of high synchronicity. The PUFA effects were studied in two pathological models of cellular hyperexcitability associated with epileptogenesis. We found that experimentally derived PUFA modulation of the A-type K (KA) channel, but not the delayed-rectifier K channel, restored healthy excitability by selectively reducing the response to inputs of high synchronicity. We also found that PUFA modulation of the transient Na channel was effective in this respect if the channel''s steady-state inactivation was selectively affected. Furthermore, PUFA-induced hyperpolarization of the resting membrane potential was an effective approach to prevent hyperexcitability. When the combined effect of PUFA on the KA channel, the Na channel, and the resting membrane potential, was simulated, a lower concentration of PUFA was needed to restore healthy excitability. We therefore propose that one explanation of the beneficial effect of PUFAs lies in its simultaneous action on a range of ion-channel targets. Furthermore, this work suggests that a pharmacological cocktail acting on the voltage dependence of the Na-channel inactivation, the voltage dependences of KA channels, and the resting potential can be an effective treatment of epilepsy.  相似文献   

14.
Normal sound localization requires precise comparisons of sound timing and pressure levels between the two ears. The primary localization cues are interaural time differences, ITD, and interaural level differences, ILD. Voltage-gated potassium channels, including Kv3.3, are highly expressed in the auditory brainstem and are thought to underlie the exquisite temporal precision and rapid spike rates that characterize brainstem binaural pathways. An autosomal dominant mutation in the gene encoding Kv3.3 has been demonstrated in a large Filipino kindred manifesting as spinocerebellar ataxia type 13 (SCA13). This kindred provides a rare opportunity to test in vivo the importance of a specific channel subunit for human hearing. Here, we demonstrate psychophysically that individuals with the mutant allele exhibit profound deficits in both ITD and ILD sensitivity, despite showing no obvious impairment in pure-tone sensitivity with either ear. Surprisingly, several individuals exhibited the auditory deficits even though they were pre-symptomatic for SCA13. We would expect that impairments of binaural processing as great as those observed in this family would result in prominent deficits in localization of sound sources and in loss of the "spatial release from masking" that aids in understanding speech in the presence of competing sounds.  相似文献   

15.
This second of three papers, in which we functionally characterize activation gating in Shaker potassium channels, focuses on the properties of a mutant channel (called V2), in which the leucine at position 382 (in the Shaker B sequence) is mutated to valine. The general properties of V2''s ionic and gating currents are consistent with changes in late gating transitions, in particular, with V2 disrupting the positively cooperative gating process of the normally activating wild type (WT) channel. An analysis of forward and backward rate constants, analogous to that used for WT in the previous paper, indicates that V2 causes little change in the rates for most of the transitions in the activation path, but causes large changes in the backward rates of the final two transitions. Single channel data indicate that the V2 mutation causes moderate changes in the rates of transitions to states that are not in the activation path, but little change in the rates from these states. V2''s data also yield insights into the general properties of the activation gating process that could not be readily obtained from the WT channel, including evidence that intermediate transitions have rapid backward rates, and an estimate of a total charge 2 e0 for the final two transitions. Taken together, these data will help constrain an activation gating model in the third paper of this series, while also providing an explanation for V2''s effects.  相似文献   

16.
Structural models of voltage-gated channels suggest that flexibility of the S3-S4 linker region may be important in allowing the S4 region to undergo large conformational changes in its putative voltage-sensing function. We report here the initial characterization of 18 mutations in the S3-S4 linker of the Shaker channel, including deletions, insertions, charge changes, substitution of prolines, and chimeras replacing the 25-residue Shaker linker with 7- or 9-residue sequences from Shab, Shaw, or Shal. As measured in Xenopus oocytes with a two-microelectrode voltage clamp, each mutant construct yielded robust currents. Changes in the voltage dependence of activation were small, with activation voltage shifts of 13 mV or less. Substitution of linkers from the slowly activating Shab and Shaw channels resulted in a three- to fourfold slowing of activation and deactivation. It is concluded that the S3-S4 linker is unlikely to participate in a large conformational change during channel activation. The linker, which in some channel subfamilies has highly conserved sequences, may however be a determinant of activation kinetics in potassium channels, as previously has been suggested in the case of calcium channels.  相似文献   

17.
18.
19.
Greening cucumber (Cucumis sativus L.) cotyledons exhibited dramatic increases in the ability to desaturate exogenously added [1-14C]oleic acid and [1-14C]linoleic acid within 2 to 3 hours of illumination. These increases were effectively inhibited by 10 micrograms per milliliter cycloheximide. Oleate desaturation remained at a high level in constant light for 5 to 6 days after induction and then declined by about 50%; when returned to the dark, the tissue showed a sharp decrease in conversion of [14C]oleate to [14C]linoleate. Linoleate desaturation reached a maximum about 15 hours after induction and declined immediately thereafter while the tissue still was in the light; after induction had peaked return of the tissue to the dark showed a dramatic fall of linoleate desaturation. The changes in desaturation were correlated with the conversion of the principal fatty acid in the etiolated cotyledons, linoleate, to α-linolenate, and with the assembly of the chlorophyll-containing photosynthetic membranes. The incorporation of [1-14C]acetate into lipids showed no significant light stimulation. The role of light in the regulation of certain aspects of plant metabolism during development is discussed.  相似文献   

20.
The Polyunsaturated Fatty Acids of Marine Dinoflagellates   总被引:1,自引:0,他引:1  
SYNOPSIS. Eight photosynthetic and one heterotrophic, marine dinoflagellates were cultured axenically in chemically defined media and their fatty acids characterized. Palmitic, octadecatetraenoic and docosahexaenoic were the most typical fatty acids. Photosynthetic forms also contained the polyunsaturates icosapentaenoic acid and α-linolenic acid, the latter as a relatively minor component. The galactolipids of one photosynthetic species, Glenodinium sp., were isolated and their fatty acids analyzed. Octadecatetraenoic acid was the predominant fatty acid, particularly of the monogalactosyl diglyceride fraction.
The relationship of these findings to the body of knowledge of the photosynthesis-associated lipids of eucaryotic microbes and to the ecology of polyunsaturated fatty acids in marine food chains is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号