首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mitosis, the pericentromere is organized into a spring composed of cohesin, condensin, and a rosette of intramolecular chromatin loops. Cohesin and condensin are enriched in the pericentromere, with spatially distinct patterns of localization. Using model convolution of computer simulations, we deduce the mechanistic consequences of their spatial segregation. Condensin lies proximal to the spindle axis, whereas cohesin is radially displaced from condensin and the interpolar microtubules. The histone deacetylase Sir2 is responsible for the axial position of condensin, while the radial displacement of chromatin loops dictates the position of cohesin. The heterogeneity in distribution of condensin is most accurately modeled by clusters along the spindle axis. In contrast, cohesin is evenly distributed (barrel of 500-nm width × 550-nm length). Models of cohesin gradients that decay from the centromere or sister cohesin axis, as previously suggested, do not match experimental images. The fine structures of cohesin and condensin deduced with subpixel localization accuracy reveal critical features of how these complexes mold pericentric chromatin into a functional spring.  相似文献   

2.
Sister chromatid cohesion provides the mechanistic basis, together with spindle microtubules, for generating tension between bioriented chromosomes in metaphase. Pericentric chromatin forms an intramolecular loop that protrudes bidirectionally from the sister chromatid axis. The centromere lies on the surface of the chromosome at the apex of each loop. The cohesin and condensin structural maintenance of chromosomes (SMC) protein complexes are concentrated within the pericentric chromatin, but whether they contribute to tension-generating mechanisms is not known. To understand how pericentric chromatin is packaged and resists tension, we map the position of cohesin (SMC3), condensin (SMC4), and pericentric LacO arrays within the spindle. Condensin lies proximal to the spindle axis and is responsible for axial compaction of pericentric chromatin. Cohesin is radially displaced from the spindle axis and confines pericentric chromatin. Pericentric cohesin and condensin contribute to spindle length regulation and dynamics in metaphase. Together with the intramolecular centromere loop, these SMC complexes constitute a molecular spring that balances spindle microtubule force in metaphase.  相似文献   

3.
The centromere is the DNA locus that dictates kinetochore formation and is visibly apparent as heterochromatin that bridges sister kinetochores in metaphase. Sister centromeres are compacted and held together by cohesin, condensin, and topoisomerase-mediated entanglements until all sister chromosomes bi-orient along the spindle apparatus. The establishment of tension between sister chromatids is essential for quenching a checkpoint kinase signal generated from kinetochores lacking microtubule attachment or tension. How the centromere chromatin spring is organized and functions as a tensiometer is largely unexplored. We have discovered that centromere chromatin loops generate an extensional/poleward force sufficient to release nucleosomes proximal to the spindle axis. This study describes how the physical consequences of DNA looping directly underlie the biological mechanism for sister centromere separation and the spring-like properties of the centromere in mitosis.  相似文献   

4.
Pericentric chromatin is organized into an intramolecular loop in mitosis   总被引:7,自引:0,他引:7  
BACKGROUND: Cohesin proteins link sister chromatids and provide the basis for tension between bioriented sister chomatids in mitosis. Cohesin is concentrated at the centromere region of the chromosome despite the fact that sister centromeres can be separated by 800 nm in vivo. The function of cohesin at sites of separated DNA is unknown. RESULTS: We provide evidence that the kinetochore promotes the organization of pericentric chromatin into a cruciform in mitosis such that centromere-flanking DNA adopts an intramolecular loop, whereas sister-chromatid arms are paired intermolecularly. Visualization of cohesin subunits by fluorescence microscopy revealed a cylindrical structure that encircles the central spindle and spans the distance between sister kinetochores. Kinetochore assembly at the apex of the loop initiates intrastrand loop formation that extends approximately 25 kb (12.5 kb on either side of the centromere). Two centromere loops (one from each sister chromatid) are stretched between the ends of sister-kinetochore microtubules along the spindle axis. At the base of the loop there is a transition to intermolecular sister-chromatid pairing. CONCLUSIONS: The C loop conformation reveals the structural basis for sister-kinetochore clustering in budding yeast and for kinetochore biorientation and thus resolves the paradox of maximal interstrand separation in regions of highest cohesin concentration.  相似文献   

5.
Condensin is enriched in the pericentromere of budding yeast chromosomes where it is constrained to the spindle axis in metaphase. Pericentric condensin contributes to chromatin compaction, resistance to microtubule-based spindle forces, and spindle length and variance regulation. Condensin is clustered along the spindle axis in a heterogeneous fashion. We demonstrate that pericentric enrichment of condensin is mediated by interactions with transfer ribonucleic acid (tRNA) genes and their regulatory factors. This recruitment is important for generating axial tension on the pericentromere and coordinating movement between pericentromeres from different chromosomes. The interaction between condensin and tRNA genes in the pericentromere reveals a feature of yeast centromeres that has profound implications for the function and evolution of mitotic segregation mechanisms.  相似文献   

6.
Chromosomes are organized as chromatin loops that promote segregation, enhancer-promoter interactions, and other genomic functions. Loops were hypothesized to form by ‘loop extrusion,’ by which structural maintenance of chromosomes (SMC) complexes, such as condensin and cohesin, bind to chromatin, reel it in, and extrude it as a loop. However, such exotic motor activity had never been observed. Following an explosion of indirect evidence, recent single-molecule experiments directly imaged DNA loop extrusion by condensin and cohesin in vitro. These experiments observe rapid (kb/s) extrusion that requires ATP hydrolysis and stalls under pN forces. Surprisingly, condensin extrudes loops asymmetrically, challenging previous models. Extrusion by cohesin is symmetric but requires the protein Nipbl. We discuss how SMC complexes may perform their functions on chromatin in vivo.  相似文献   

7.
The mitotic segregation apparatus composed of microtubules and chromatin functions to faithfully partition a duplicated genome into two daughter cells. Microtubules exert extensional pulling force on sister chromatids toward opposite poles, whereas pericentric chromatin resists with contractile springlike properties. Tension generated from these opposing forces silences the spindle checkpoint to ensure accurate chromosome segregation. It is unknown how the cell senses tension across multiple microtubule attachment sites, considering the stochastic dynamics of microtubule growth and shortening. In budding yeast, there is one microtubule attachment site per chromosome. By labeling several chromosomes, we find that pericentromeres display coordinated motion and stretching in metaphase. The pericentromeres of different chromosomes exhibit physical linkage dependent on centromere function and structural maintenance of chromosomes complexes. Coordinated motion is dependent on condensin and the kinesin motor Cin8, whereas coordinated stretching is dependent on pericentric cohesin and Cin8. Linking of pericentric chromatin through cohesin, condensin, and kinetochore microtubules functions to coordinate dynamics across multiple attachment sites.  相似文献   

8.
9.
Filipski J  Mucha M 《Gene》2002,300(1-2):63-68
Recent localization of cohesin association regions along the yeast chromatin fibre suggests that compositional variability of DNA in yeast is related to the function and organization of the chromosomal loops. The bases of the loops, where the chromatin fibre is attached to the chromosomal axis, are AT-rich, bind cohesin, and are flanked by genes transcribed convergently. The hotspots of meiotic recombination are mainly found in the GC-rich parts of the loops, ‘external’ with respect to the chromosomal axis, frequently in the vicinity of the promoters of divergently transcribed genes. There are two possible reasons why the regions of the hotspots of recombination were enriched in GC content during evolution. One is a biased repair of recombination intermediates, and the second is a selective advantage due to an increased chromatin accessibility, which may have the carriers of GC-enriched alleles over the carriers of AT-rich alleles.  相似文献   

10.
Two related protein complexes, cohesin and condensin, are essential for separating identical copies of the genome into daughter cells during cell division. Cohesin glues replicated sister chromatids together until they split at anaphase, whereas condensin reorganizes chromosomes into their highly compact mitotic structure. Unexpectedly, mutations in the subunits of these complexes have been uncovered in genetic screens that target completely different processes. Exciting new evidence is emerging that cohesin and condensin influence crucial processes during interphase, and unforeseen aspects of mitosis. Each complex can perform several roles, and individual subunits can associate with different sets of proteins to achieve diverse functions, including the regulation of gene expression, DNA repair, cell-cycle checkpoints and centromere organization.  相似文献   

11.
The structural organization of chromosomes is essential for their correct function and dynamics during the cell cycle. The assembly of DNA into chromatin provides the substrate for topoisomerases and condensins, which introduce the different levels of superhelical torsion required for DNA metabolism. In particular, Top2 and condensin are directly involved in both the resolution of precatenanes that form during replication and the formation of the intramolecular loop that detects tension at the centromeric chromatin during chromosome biorientation. Here we show that histone depletion activates the spindle assembly checkpoint (SAC) and impairs sister chromatid decatenation, leading to chromosome mis-segregation and lethality in the absence of the SAC. We demonstrate that histone depletion impairs chromosome biorientation and activates the Aurora-dependent pathway, which detects tension problems at the kinetochore. Interestingly, SAC activation is suppressed by the absence of Top2 and Smc2, an essential component of condensin. Indeed, smc2-8 suppresses catenanes accumulation, mitotic arrest and growth defects induced by histone depletion at semi-permissive temperature. Remarkably, SAC activation by histone depletion is associated with condensin-mediated alterations of the centromeric chromatin. Therefore, our results reveal the importance of a precise interplay between histone supply and condensin/Top2 for pericentric chromatin structure, precatenanes resolution and centromere biorientation.  相似文献   

12.
Successful meiotic recombination, and thus fertility, depends on conserved axis proteins that organize chromosomes into arrays of anchored chromatin loops and provide a protected environment for DNA exchange. Here, we show that the stereotypic chromosomal distribution of axis proteins in Saccharomyces cerevisiae is the additive result of two independent pathways: a cohesin-dependent pathway, which was previously identified and mediates focal enrichment of axis proteins at gene ends, and a parallel cohesin-independent pathway that recruits axis proteins to broad genomic islands with high gene density. These islands exhibit elevated markers of crossover recombination as well as increased nucleosome density, which we show is a direct consequence of the underlying DNA sequence. A predicted PHD domain in the center of the axis factor Hop1 specifically mediates cohesin-independent axis recruitment. Intriguingly, other chromosome organizers, including cohesin, condensin, and topoisomerases, are differentially depleted from the same regions even in non-meiotic cells, indicating that these DNA sequence-defined chromatin islands exert a general influence on the patterning of chromosome structure.  相似文献   

13.
Mammalian genomes are spatially organized into compartments, topologically associating domains (TADs), and loops to facilitate gene regulation and other chromosomal functions. How compartments, TADs, and loops are generated is unknown. It has been proposed that cohesin forms TADs and loops by extruding chromatin loops until it encounters CTCF, but direct evidence for this hypothesis is missing. Here, we show that cohesin suppresses compartments but is required for TADs and loops, that CTCF defines their boundaries, and that the cohesin unloading factor WAPL and its PDS5 binding partners control the length of loops. In the absence of WAPL and PDS5 proteins, cohesin forms extended loops, presumably by passing CTCF sites, accumulates in axial chromosomal positions (vermicelli), and condenses chromosomes. Unexpectedly, PDS5 proteins are also required for boundary function. These results show that cohesin has an essential genome‐wide function in mediating long‐range chromatin interactions and support the hypothesis that cohesin creates these by loop extrusion, until it is delayed by CTCF in a manner dependent on PDS5 proteins, or until it is released from DNA by WAPL.  相似文献   

14.
The juxtaposition of intracellular DNA segments, together with the DNA‐passage activity of topoisomerase II, leads to the formation of DNA knots and interlinks, which jeopardize chromatin structure and gene expression. Recent studies in budding yeast have shown that some mechanism minimizes the knotting probability of intracellular DNA. Here, we tested whether this is achieved via the intrinsic capacity of topoisomerase II for simplifying the equilibrium topology of DNA; or whether it is mediated by SMC (structural maintenance of chromosomes) protein complexes like condensin or cohesin, whose capacity to extrude DNA loops could enforce dissolution of DNA knots by topoisomerase II. We show that the low knotting probability of DNA does not depend on the simplification capacity of topoisomerase II nor on the activities of cohesin or Smc5/6 complexes. However, inactivation of condensin increases the occurrence of DNA knots throughout the cell cycle. These results suggest an in vivo role for the DNA loop extrusion activity of condensin and may explain why condensin disruption produces a variety of alterations in interphase chromatin, in addition to persistent sister chromatid interlinks in mitotic chromatin.  相似文献   

15.
We engineered mutants into residues of SMC2 to dissect the role of ATPase function in the condensin complex. These residues are predicted to be involved in ATP binding or hydrolysis and in the Q-loop, which is thought to act as a mediator of conformational changes induced by substrate binding. All the engineered ATPase mutations resulted in lethality when introduced into SMC2 null cells. We found that ATP binding, but not hydrolysis, is essential to allow stable condensin association with chromosomes. How SMC proteins bind and interact with DNA is still a major question. Cohesin may form a ring structure that topologically encircles DNA. We examined whether condensin behaves in an analogous way to its cohesin counterpart, and we have generated a cleavable form of biologically active condensin with PreScission protease sites engineered into the SMC2 protein. This has allowed us to demonstrate that topological integrity of the SMC2-SMC4 heterodimer is not necessary for the stability of the condensin complex in vitro or for its stable association with mitotic chromosomes. Thus, despite their similar molecular organization, condensin and cohesin exhibit fundamental differences in their structure and function.  相似文献   

16.
The ring-shaped cohesin complex links sister chromatids until their timely segregation during mitosis. Cohesin is enriched at centromeres where it provides the cohesive counterforce to bipolar tension produced by the mitotic spindle. As a consequence of spindle tension, centromeric sequences transiently split in pre-anaphase cells, in some organisms up to several micrometers. This ‘centromere breathing’ presents a paradox, how sister sequences separate where cohesin is most enriched. We now show that in the budding yeast Saccharomyces cerevisiae, cohesin binding diminishes over centromeric sequences that split during breathing. We see no evidence for cohesin translocation to surrounding sequences, suggesting that cohesin is removed from centromeres during breathing. Two pools of cohesin can be distinguished. Cohesin loaded before DNA replication, which has established sister chromatid cohesion, disappears during breathing. In contrast, cohesin loaded after DNA replication is partly retained. As sister centromeres re-associate after transient separation, cohesin is reloaded in a manner independent of the canonical cohesin loader Scc2/Scc4. Efficient centromere re-association requires the cohesion establishment factor Eco1, suggesting that re-establishment of sister chromatid cohesion contributes to the dynamic behaviour of centromeres in mitosis. These findings provide new insights into cohesin behaviour at centromeres. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Pavlova SV  Zakiian SM 《Genetika》2003,39(10):1301-1316
Structural chromatin proteins of the SMC (Structural Maintenance of Chromosomes) family play an important role in structural DNA reorganization in pro- and eukaryotes. Eukaryotic SMC proteins are the core components of the cohesin and condensin complexes. The cohesin complex is responsible for sister chromatid and homolog cohesion in mitosis and meiosis. The condensin complex uses ATP energy to induce positive coiled-coils in DNA, which results in compaction of the latter and formation of mitotic chromosome scaffold. In addition, the SMC proteins constitute recombination and recombination repair complexes. In hermaphrodites of nematode Caenorhabditis elegans, the SMC protein-containing complex controls dosage compensation and inactivation of the X chromosome genes.  相似文献   

18.
Two different condensin complexes make distinct contributions to metaphase chromosome architecture in vertebrate cells. We show here that the spatial and temporal distributions of condensins I and II are differentially regulated during the cell cycle in HeLa cells. Condensin II is predominantly nuclear during interphase and contributes to early stages of chromosome assembly in prophase. In contrast, condensin I is sequestered in the cytoplasm from interphase through prophase and gains access to chromosomes only after the nuclear envelope breaks down in prometaphase. The two complexes alternate along the axis of metaphase chromatids, but they are arranged into a unique geometry at the centromere/kinetochore region, with condensin II enriched near the inner kinetochore plate. This region-specific distribution of condensins I and II is severely disrupted upon depletion of Aurora B, although their association with the chromosome arm is not. Depletion of condensin subunits causes defects in kinetochore structure and function, leading to aberrant chromosome alignment and segregation. Our results suggest that the two condensin complexes act sequentially to initiate the assembly of mitotic chromosomes and that their specialized distribution at the centromere/kinetochore region may play a crucial role in placing sister kinetochores into the back-to-back orientation.  相似文献   

19.
Condensin and cohesin are two protein complexes that act as the central mediators of chromosome condensation and sister chromatid cohesion, respectively. The basic underlying mechanism of action of these complexes remained enigmatic. Direct visualization of condensin and cohesin was expected to provide hints to their mechanisms. They are composed of heterodimers of distinct structural maintenance of chromosome (SMC) proteins and other non-SMC subunits. Here, we report the first observation of the architecture of condensin and its interaction with DNA by atomic force microscopy (AFM). The purified condensin SMC heterodimer shows a head-tail structure with a single head composed of globular domains and a tail with the coiled-coil region. Unexpectedly, the condensin non-SMC trimers associate with the head of SMC heterodimers, producing a larger head with the tail. The heteropentamer is bound to DNA in a distributive fashion, whereas condensin SMC heterodimers interact with DNA as aggregates within a large DNA-protein assembly. Thus, non-SMC trimers may regulate the ATPase activity of condensin by directly interacting with the globular domains of SMC heterodimer and alter the mode of DNA interaction. A model for the action of heteropentamer is presented.  相似文献   

20.
The mechanisms by which sister chromatids maintain biorientation on the metaphase spindle are critical to the fidelity of chromosome segregation. Active force interplay exists between predominantly extensional microtubule-based spindle forces and restoring forces from chromatin. These forces regulate tension at the kinetochore that silences the spindle assembly checkpoint to ensure faithful chromosome segregation. Depletion of pericentric cohesin or condensin has been shown to increase the mean and variance of spindle length, which have been attributed to a softening of the linear chromatin spring. Models of the spindle apparatus with linear chromatin springs that match spindle dynamics fail to predict the behavior of pericentromeric chromatin in wild-type and mutant spindles. We demonstrate that a nonlinear spring with a threshold extension to switch between spring states predicts asymmetric chromatin stretching observed in vivo. The addition of cross-links between adjacent springs recapitulates coordination between pericentromeres of neighboring chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号