首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytomegaloviruses carry the US22 family of genes, which have common sequence motifs but diverse functions. Only two of the 12 US22 family genes of murine cytomegalovirus (MCMV) are essential for virus replication, but their functions have remained unknown. In the present study, we deleted the essential US22 family genes, m142 and m143, from the MCMV genome and propagated the mutant viruses on complementing cells. The m142 and the m143 deletion mutants were both unable to replicate in noncomplementing cells at low and high multiplicities of infection. In cells infected with the deletion mutants, viral immediate-early and early proteins were expressed, but viral DNA replication and synthesis of the late-gene product glycoprotein B were inhibited, even though mRNAs of late genes were present. Global protein synthesis was impaired in these cells, which correlated with phosphorylation of the double-stranded RNA-dependent protein kinase R (PKR) and its target protein, the eukaryotic translation initiation factor 2alpha, suggesting that m142 and m143 are necessary to block the PKR-mediated shutdown of protein synthesis. Replication of the m142 and m143 knockout mutants was partially restored by expression of the human cytomegalovirus TRS1 gene, a known double-stranded-RNA-binding protein that inhibits PKR activation. These results indicate that m142 and m143 are both required for inhibition of the PKR-mediated host antiviral response.  相似文献   

2.
Double-stranded RNA (dsRNA) produced during viral infection activates several cellular antiviral responses. Among the best characterized is the shutoff of protein synthesis mediated by the dsRNA-dependent protein kinase (PKR) and the oligoadenylate synthetase (OAS)/RNase L system. As viral replication depends on protein synthesis, many viruses have evolved mechanisms for counteracting the PKR and OAS/RNase L pathways. The murine cytomegalovirus (MCMV) proteins m142 and m143 have been characterized as dsRNA binding proteins that inhibit PKR activation, phosphorylation of the translation initiation factor eIF2α, and a subsequent protein synthesis shutoff. In the present study we analyzed the contribution of the PKR- and the OAS-dependent pathways to the control of MCMV replication in the absence or presence of m142 and m143. We show that the induction of eIF2α phosphorylation during infection with an m142- and m143-deficient MCMV is specifically mediated by PKR, not by the related eIF2α kinases PERK or GCN2. PKR antagonists of vaccinia virus (E3L) or herpes simplex virus (γ34.5) rescued the replication defect of an MCMV strain with deletions of both m142 and m143. Moreover, m142 and m143 bound to each other and interacted with PKR. By contrast, an activation of the OAS/RNase L pathway by MCMV was not detected in the presence or absence of m142 and m143, suggesting that these viral proteins have little or no influence on this pathway. Consistently, an m142- and m143-deficient MCMV strain replicated to high titers in fibroblasts lacking PKR but did not replicate in cells lacking RNase L. Hence, the PKR-mediated antiviral response is responsible for the essentiality of m142 and m143.  相似文献   

3.
In response to viral infection, cells activate a variety of antiviral responses, including several that are triggered by double-stranded (ds) RNA. Among these are the protein kinase R and oligoadenylate synthetase/RNase L pathways, both of which result in the shutoff of protein synthesis. Many viruses, including human cytomegalovirus, encode dsRNA-binding proteins that prevent the activation of these pathways and thereby enable continued protein synthesis and viral replication. We have extended these analyses to another member of the beta subfamily of herpesviruses, murine cytomegalovirus (MCMV), and now report that products of the m142 and m143 genes together bind dsRNA. Coimmunoprecipitation experiments demonstrate that these two proteins interact in infected cells, consistent with their previously reported colocalization. Jointly, but not individually, the proteins rescue replication of a vaccinia virus mutant with a deletion of the dsRNA-binding protein gene E3L (VVDeltaE3L). Like the human cytomegalovirus dsRNA-binding protein genes TRS1 and IRS1, m142 and m143 are members of the US22 gene family. We also found that two other members of the MCMV US22 family, M23 and M24, encode dsRNA-binding proteins, but they do not rescue VVDeltaE3L replication. These results reveal that MCMV, like many other viruses, encodes dsRNA-binding proteins, at least two of which can inhibit dsRNA-activated antiviral pathways. However, unlike other well-studied examples, the MCMV proteins appear to act in a heterodimeric complex.  相似文献   

4.
Many viruses have evolved mechanisms to evade the repression of translation mediated by protein kinase R (PKR). In the case of murine cytomegalovirus (MCMV), the protein products of two essential genes, m142 and m143, bind to double-stranded RNA (dsRNA) and block phosphorylation of PKR and eukaryotic initiation factor 2α. A distinctive feature of MCMV is that two proteins are required to block PKR activation whereas other viral dsRNA-binding proteins that prevent PKR activation contain all the necessary functions in a single protein. In order to better understand the mechanism by which MCMV evades the PKR response, we investigated the associations of pm142 and pm143 with each other and with PKR. Both pm142 and pm143 interact with PKR in infected and transfected cells. However, the ~200-kDa pm142-pm143 complex that forms in these cells does not contain substantial amounts of PKR, suggesting that the interactions between pm142-pm143 and PKR are unstable or transient. The stable, soluble pm142-pm143 complex appears to be a heterotetramer consisting of two molecules of pm142 associated with each other, and each one binds to and stabilizes a monomer of pm143. MCMV infection also causes relocalization of PKR into the nucleus and to an insoluble cytoplasmic compartment. These results suggest a model in which the pm142-pm143 multimer interacts with PKR and causes its sequestration in cellular compartments where it is unable to shut off translation and repress viral replication.  相似文献   

5.
Many viruses encode proteins that inhibit the induction of programmed cell death at the mitochondrial checkpoint. Murine cytomegalovirus (MCMV) encodes the m38.5 protein, which localizes to mitochondria and protects human HeLa cells and fibroblasts from apoptosis triggered by proteasome inhibitors but not from Fas-induced apoptosis. However, the ability of this protein to suppress the apoptosis of murine cells and its role during MCMV infection have not been investigated previously. Here we show that m38.5 is expressed at early time points during MCMV infection. Cells infected with MCMVs lacking m38.5 showed increased sensitivity to cell death induced by staurosporine, MG132, or the viral infection itself compared to the sensitivity of cells infected with wild-type MCMV. This defect was eliminated when an m38.5 or Bcl-X(L) gene was inserted into the genome of a deletion mutant. Using fibroblasts deficient in the proapoptotic Bcl-2 family proteins Bak and/or Bax, we further demonstrated that m38.5 protected from Bax- but not Bak-mediated apoptosis and interacted with Bax in infected cells. These results consolidate the role of m38.5 as a viral mitochondrion-localized inhibitor of apoptosis and its functional similarity to the human cytomegalovirus UL37x1 gene product. Although the m38.5 gene is not homologous to the UL37x1 gene at the sequence level, m38.5 is conserved among rodent cytomegaloviruses. Moreover, the fact that MCMV-infected cells are protected from both Bak- and Bax-mediated cell death suggests that MCMV possesses an additional, as-yet-unidentified mechanism to block Bak-mediated apoptosis.  相似文献   

6.
The large cytomegalovirus (CMV) US22 gene family, found in all betaherpesviruses, comprises 12 members in both human cytomegalovirus (HCMV) and murine cytomegalovirus (MCMV). Conserved sequence motifs suggested a common ancestry and related functions for these gene products. Two members of this family, m140 and m141, were recently shown to affect MCMV replication on macrophages. To test the role of all US22 members in cell tropism, we analyzed the growth properties in different cell types of MCMV mutants carrying transposon insertions in all 12 US22 gene family members. When necessary, additional targeted mutants with gene deletions, ATG deletions, and ectopic gene revertants were constructed. Mutants with disruption of genes M23, M24, m25.1, m25.2, and m128 (ie2) showed no obvious growth phenotype, whereas growth of M43 mutants was reduced in a number of cell lines. Genes m142 and m143 were shown to be essential for virus replication. Growth of mutants with insertions into genes M36, m139, m140, and m141 in macrophages was severely affected. The common phenotype of the m139, m140, and m141 mutants was explained by an interaction at the protein level. The M36-dependent macrophage growth phenotype could be explained by the antiapoptotic function of the gene that was required for growth on macrophages but not for growth on other cell types. Together, the comprehensive set of mutants of the US22 gene family suggests that individual family members have diverged through evolution to serve a variety of functions for the virus.  相似文献   

7.
8.
Natural killer (NK) cells play a critical role in controlling murine cytomegalovirus (MCMV) and can mediate both cytokine production and direct cytotoxicity. The NK cell activation receptor, Ly49H, is responsible for genetic resistance to MCMV in C57BL/6 mice. Recognition of the viral m157 protein by Ly49H is sufficient for effective control of MCMV infection. Additionally, during the host response to infection, distinct immune and non-immune cells elaborate a variety of pleiotropic cytokines which have the potential to impact viral pathogenesis, NK cells, and other immune functions, both directly and indirectly. While the effects of various immune deficiencies have been examined for general antiviral phenotypes, their direct effects on Ly49H-dependent MCMV control are poorly understood. To specifically interrogate Ly49H-dependent functions, herein we employed an in vivo viral competition approach to show Ly49H-dependent MCMV control is specifically mediated through cytotoxicity but not IFNγ production. Whereas m157 induced Ly49H-dependent degranulation, efficient cytotoxicity also required either IL-12 or type I interferon (IFN-I) which acted directly on NK cells to produce granzyme B. These studies demonstrate that both of these distinct NK cell-intrinsic mechanisms are integrated for optimal viral control by NK cells.  相似文献   

9.
There is increasing evidence for a connection between DNA replication and the expression of adjacent genes. Therefore, this study addressed the question of whether a herpesvirus origin of replication can be used to activate or increase the expression of adjacent genes. Cell lines carrying an episomal vector, in which reporter genes are linked to the murine cytomegalovirus (MCMV) origin of lytic replication (oriLyt), were constructed. Reporter gene expression was silenced by a histone-deacetylase-dependent mechanism, but was resolved upon lytic infection with MCMV. Replication of the episome was observed subsequent to infection, leading to the induction of gene expression by more than 1000-fold. oriLyt-based regulation thus provided a unique opportunity for virus-induced conditional gene expression without the need for an additional induction mechanism. This principle was exploited to show effective late trans-complementation of the toxic viral protein M50 and the glycoprotein gO of MCMV. Moreover, the application of this principle for intracellular immunization against herpesvirus infection was demonstrated. The results of the present study show that viral infection specifically activated the expression of a dominant-negative transgene, which inhibited viral growth. This conditional system was operative in explant cultures of transgenic mice, but not in vivo. Several applications are discussed.  相似文献   

10.
11.
A murine cytomegalovirus (MCMV)-encoded protein, m157, has a putative major histocompatibility complex class I (MHC-I) structure and is recognized by the Ly49H NK cell activation receptor. Using a monoclonal antibody against m157, in this study we directly demonstrated that m157 is a cell surface-expressed glycophosphatidylinositol-anchored protein with early viral gene kinetics. Beta-2 microglobulin and TAP1 (transporter associated with antigen processing 1) were not required for its expression. MCMV-encoded proteins that down-regulate MHC-I did not affect the expression of m157. Thus, m157 is expressed on infected cells in a manner independent of viral regulation of host MHC-I.  相似文献   

12.
The inhibition of death-receptor apoptosis is a conserved viral function. The murine cytomegalovirus (MCMV) gene M36 is a sequence and functional homologue of the human cytomegalovirus gene UL36, and it encodes an inhibitor of apoptosis that binds to caspase-8, blocks downstream signaling and thus contributes to viral fitness in macrophages and in vivo. Here we show a direct link between the inability of mutants lacking the M36 gene (ΔM36) to inhibit apoptosis, poor viral growth in macrophage cell cultures and viral in vivo fitness and virulence. ΔM36 grew poorly in RAG1 knockout mice and in RAG/IL-2-receptor common gamma chain double knockout mice (RAGγC−/−), but the depletion of macrophages in either mouse strain rescued the growth of ΔM36 to almost wild-type levels. This was consistent with the observation that activated macrophages were sufficient to impair ΔM36 growth in vitro. Namely, spiking fibroblast cell cultures with activated macrophages had a suppressive effect on ΔM36 growth, which could be reverted by z-VAD-fmk, a chemical apoptosis inhibitor. TNFα from activated macrophages synergized with IFNγ in target cells to inhibit ΔM36 growth. Hence, our data show that poor ΔM36 growth in macrophages does not reflect a defect in tropism, but rather a defect in the suppression of antiviral mediators secreted by macrophages. To the best of our knowledge, this shows for the first time an immune evasion mechanism that protects MCMV selectively from the antiviral activity of macrophages, and thus critically contributes to viral pathogenicity in the immunocompromised host devoid of the adaptive immune system.  相似文献   

13.
Several early genes of murine cytomegalovirus (MCMV) encode proteins that mediate immune evasion by interference with the major histocompatibility complex class I (MHC-I) pathway of antigen presentation to cytolytic T lymphocytes (CTL). Specifically, the m152 gene product gp37/40 causes retention of MHC-I molecules in the endoplasmic reticulum (ER)-Golgi intermediate compartment. Lack of MHC-I on the cell surface should activate natural killer (NK) cells recognizing the "missing self." The retention, however, is counteracted by the m04 early gene product gp34, which binds to folded MHC-I molecules in the ER and directs the complex to the cell surface. It was thus speculated that gp34 might serve to silence NK cells and thereby complete the immune evasion of MCMV. In light of these current views, we provide here results demonstrating an in vivo role for gp34 in protective antiviral immunity. We have identified an antigenic nonapeptide derived from gp34 and presented by the MHC-I molecule D(d). Besides the immunodominant immediate-early nonapeptide consisting of IE1 amino acids 168-176 (IE1(168-176)), the early nonapeptide m04(243-251) is the second antigenic peptide described for MCMV. The primary immune response to MCMV generates significant m04-specific CD8 T-cell memory. Upon adoptive transfer into immunodeficient recipients, an m04-specific CTL line controls MCMV infection with an efficacy comparable to that of an IE1-specific CTL line. Thus, gp34 is the first noted early protein of MCMV that escapes viral immune evasion mechanisms. These data document that MCMV is held in check by a redundance of protective CD8 T cells recognizing antigenic peptides in different phases of viral gene expression.  相似文献   

14.
Human cytomegalovirus (HCMV) is the major viral cause of morbidity in immune compromised patients and of pre- and perinatal pathology in newborns. The clinical manifestations are highly variable and the principles which govern these differences cannot be understood without detailed knowledge on tissue specific aspects of HCMV infection. For decades the role of individual cell types during cytomegalovirus infection and disease has been discussed. The pathogenesis of mouse cytomegalovirus (MCMV) mirrors the human infection in many aspects. Although only MCMV infection is studied extensively at the level of organs, the relative contribution of specific cell types to viral pathogenesis in vivo has remained enigmatic. Here we discuss new approaches based on the cre/loxP-system to label nascent virus progeny or to lift a replication block. The salient aspect of this technique is the change of viral genome properties selectively in cells that express cre during infection in vivo. This allowed us to study the role of endothelial cells and hepatocytes for virus dissemination and will permit detailed studies on innate and adaptive immune responses to CMV.  相似文献   

15.
Human cytomegalovirus virions contain three major glycoprotein complexes (gC I, II, III), all of which are required for CMV infectivity. These complexes also represent major antigenic targets for anti-viral immune responses. The gC II complex consists of two glycoproteins, gM and gN. In the current study, DNA vaccines expressing the murine cytomegalovirus (MCMV) homologs of the gM and gN proteins were evaluated for protection against lethal MCMV infection in a mouse model. Humoral and cellular immune responses, spleen viral titers, and mice survival and body-weight changes were examined. The results showed that immunization with gM or gN DNA vaccine alone was not able to offer good protection, whereas co-immunization with both gM and gN induced an effective neutralizing antibody response and cellular immune response, and provided mice with complete protection against a lethal MCMV challenge. This study provides the first in vivo evidence that the gC II (gM-gN) complex may be able to serve as a protective subunit antigen for future HCMV vaccine development.  相似文献   

16.
The MHC class I Dk molecule supplies vital host resistance during murine cytomegalovirus (MCMV) infection. Natural killer (NK) cells expressing the Ly49G2 inhibitory receptor, which specifically binds Dk, are required to control viral spread. The extent of Dk-dependent host resistance, however, differs significantly amongst related strains of mice, C57L and MA/My. As a result, we predicted that relatively small-effect modifier genetic loci might together shape immune cell features, NK cell reactivity, and the host immune response to MCMV. A robust Dk-dependent genetic effect, however, has so far hindered attempts to identify additional host resistance factors. Thus, we applied genomic mapping strategies and multicolor flow cytometric analysis of immune cells in naive and virus-infected hosts to identify genetic modifiers of the host immune response to MCMV. We discovered and validated many quantitative trait loci (QTL); these were mapped to at least 19 positions on 16 chromosomes. Intriguingly, one newly discovered non-MHC locus (Cmv5) controlled splenic NK cell accrual, secondary lymphoid organ structure, and lymphoid follicle development during MCMV infection. We infer that Cmv5 aids host resistance to MCMV infection by expanding NK cells needed to preserve and protect essential tissue structural elements, to enhance lymphoid remodeling and to increase viral clearance in spleen.  相似文献   

17.
The murine cytomegalovirus (MCMV) fcr-1 gene codes for a glycoprotein located at the surface of infected cells which strongly binds the Fc fragment of murine immunoglobulin G. To determine the biological significance of the fcr-1 gene during viral infection, we constructed MCMV fcr-1 deletion mutants and revertants. The fcr-1 gene was disrupted by insertion of the Escherichia coli lacZ gene. In another mutant, the marker gene was also deleted, by recombinase cre. As expected for its hypothetical role in immunoevasion, the infection of mice with fcr-1 deletion mutants resulted in significantly restricted replication in comparison with wild-type MCMV and revertant virus. In mutant mice lacking antibodies, however, the fcr-1 deletion mutants also replicated poorly. This demonstrated that the cell surface-expressed viral glycoprotein with FcR activity strongly modulates the virus-host interaction but that this biological function is not caused by the immunoglobulin binding property.  相似文献   

18.
Cytomegaloviruses, representatives of the Betaherpesvirinae, cause opportunistic infections in immunocompromised hosts. They infect various cells and tissues in their natural host but are highly species specific. For instance, human cytomegalovirus (HCMV) does not replicate in mouse cells, and human cells are not permissive for murine cytomegalovirus (MCMV) infection. However, the underlying molecular mechanisms are so far poorly understood. In the present study we isolated and characterized a spontaneously occurring MCMV mutant that has gained the capacity to replicate rapidly and to high titers in human cells. Compared to the parental wild-type (wt) virus, this mutant formed larger nuclear replication compartments and replicated viral DNA more efficiently. It also disrupted promyelocytic leukemia (PML) protein nuclear domains with greater efficiency but caused less apoptosis than did wt MCMV. Sequence analysis of the mutant virus genome revealed mutations in the M112/M113-coding region. This region is homologous to the HCMV UL112-113 region and encodes the viral early 1 (E1) proteins, which are known to play an important role in viral DNA replication. By introducing the M112/M113 mutations into wt MCMV, we demonstrated that they are sufficient to facilitate MCMV replication in human cells and are, at least in part, responsible for the efficient replication capability of the spontaneously adapted virus. However, additional mutations probably contribute as well. These results reveal a previously unrecognized role of the viral E1 proteins in regulating viral replication in different cells and provide new insights into the mechanisms of the species specificity of cytomegaloviruses.Cytomegaloviruses (CMVs) are prototypes of the β subfamily of the Herpesviridae. Representatives of this subfamily have been identified in various animal species, and these viruses cause similar symptoms in their respective hosts (36). HCMV is an opportunistic pathogen that causes generally mild infections in people with a fully functional immune system. However, this virus is also responsible for serious medical problems, particularly in newborns and immunocompromised patients (39).Since their first isolation in cell culture, CMVs have been recognized as highly species specific (57). They replicate only in cells of their own or a closely related species. For instance, simian CMV can replicate in human fibroblasts (32), and HCMV can replicate in chimpanzee skin fibroblasts (41). Similarly, murine cytomegalovirus (MCMV) productively infects rat cells (7, 46), but a rat cytomegalovirus did not replicate in murine fibroblasts (7). However, cells of other more distantly related species are usually nonpermissive to infection. Several studies have shown that CMVs can enter cells of other species and express a subset of viral genes (19, 20, 29, 32). This finding has led to the conclusion that the restriction to CMV replication in nonpermissive cells is associated with a postpenetration block to viral gene expression and DNA replication but not due to a failure to enter the cell (36).Recently, we picked up on this topic and tried to gain new insights into the molecular mechanisms underlying the species specificity of CMVs. We showed that CMVs of mice and rats induce apoptosis when they infect human fibroblasts or retinal epithelial cells (26). The induction of apoptosis prevented a sustained replication of these viruses in human cells and reduced progeny production to insignificant levels. When apoptosis was inhibited by the overexpression of Bcl-2 or a functionally similar protein, MCMV was able to replicate to substantial titers in human cells. These results indicated that the induction of apoptosis is an important limitation to cytomegalovirus cross-species infections (26). However, the fact that MCMV replication in human cells in the presence of apoptosis inhibition was somewhat delayed and less efficient than that in murine cells indicated that other limiting factors likely exist. Another study suggested that MCMV can replicate to low levels in human cells with the help of HCMV immediate-early 1 (IE1) and HCMV tegument proteins (50).In the present study, we describe the isolation and characterization of a mutant MCMV that has spontaneously acquired the ability to replicate rapidly and to high titers in human retinal pigment epithelial (RPE-1) cells. We show that this virus induces less apoptosis and replicates its DNA faster than the parental wild-type (wt) MCMV. Moreover, the mutant virus disrupts intranuclear sites of intrinsic antiviral defense more efficiently than the wt virus. Sequence analysis of the human cell-adapted MCMV strain revealed several alterations, including mutations in the M112/M113-coding region. By targeted mutagenesis we showed that mutations in M112/M113 are sufficient to facilitate MCMV replication in human cells. However, additional mutations most likely contribute to the remarkably efficient replication of the adapted strain.  相似文献   

19.
We and others have shown that infection of dendritic cells with murine cytomegalovirus (MCMV) leads to severe functional impairment of these antigen-presenting cells (D. M. Andrews, C. E. Andoniou, F. Granucci, P. Ricciardi-Castagnoli, and M. A. Degli-Esposti, Nat. Immunol. 2:1077-1084, 2001; S. Mathys, T. Schroeder, J. Ellwart, U. H. Koszinowski, M. Messerle, and U. Just, J. Infect. Dis. 187:988-999, 2003). Phenotypically, reduced surface expression of costimulatory molecules and major histocompatibility complex molecules was detected. In order to identify the molecular basis for the observed effects, we generated MCMV mutants with large deletions of nonessential genes. The study was facilitated by the finding that a monocyte-macrophage cell line displayed similar phenotypic alterations after MCMV infection. By analyzing the expression of cell surface molecules on infected cells, we identified a mutant virus which is no longer able to downmodulate the expression of the costimulatory molecule CD86. Additional mutants with smaller deletions allowed us to pin down the responsible gene to a certain genomic region. RNA analysis led to the identification of the spliced gene m147.5, encoding a protein with 145 amino acids. Experiments with an m147.5 mutant revealed that the protein affects CD86 expression only, suggesting that additional MCMV genes are responsible for downmodulation of the other surface molecules. Identification of viral gene products interfering with functionally important proteins of antigen-presenting cells will provide the basis to dissect the complex interaction of CMV with these important cells and to evaluate the biological importance of these viral genes in vivo.  相似文献   

20.
Natural Killer (NK) cells are crucial in early resistance to murine cytomegalovirus (MCMV) infection. In B6 mice, the activating Ly49H receptor recognizes the viral m157 glycoprotein on infected cells. We previously identified a mutant strain (MCMVG1F) whose variant m157 also binds the inhibitory Ly49C receptor. Here we show that simultaneous binding of m157 to the two receptors hampers Ly49H-dependent NK cell activation as Ly49C-mediated inhibition destabilizes NK cell conjugation with their targets and prevents the cytoskeleton reorganization that precedes killing. In B6 mice, as most Ly49H+ NK cells do not co-express Ly49C, the overall NK cell response remains able to control MCMVm157G1F infection. However, in B6 Ly49C transgenic mice where all NK cells express the inhibitory receptor, MCMV infection results in altered NK cell activation associated with increased viral replication. Ly49C-mediated inhibition also regulates Ly49H-independent NK cell activation. Most interestingly, MHC class I regulates Ly49C function through cis-interactions that mask the receptor and restricts m157 binding. B6 Ly49C Tg, β2m ko mice, whose Ly49C receptors are unmasked due to MHC class I deficient expression, are highly susceptible to MCMVm157G1F and are unable to control a low-dose infection. Our study provides novel insights into the mechanisms that regulate NK cell activation during viral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号