首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The model polychlorinated dibenzo-p-dioxins (PCDDs) 2,7-dichloro-, 2,3,7-trichloro, 1,2,6,7-, 1,2,8,9-, and 1,3,6,8-tetrachlorodibenzo-p-dioxin were used as substrates for a degradation experiment with the white-rot fungus Phlebia lindtneri. 2,7-Dichlorodibenzo-p-dioxin (2,7-diCDD) was biotransformed to hydroxylated diCDD and methoxylated diCDD. With the exception of 1,3,6,8-tetrachlorodibenzo-p-dioxin, the tri- and tetrachlorodibenzo-p-dioxins were biotransformed to hydroxyl and methoxyl compounds by P. lindtneri. The degradation rate of 1,2,6,7-tetrachlorodibenzo-p-dioxin was higher than that of 2,3,7-trichlorodibenzo-p-dioxin and no degradation of 1,3,6,8-tetrachlorodibenzo-p-dioxin was observed. These results indicate that the degradation of these PCDDs depends on the chlorination patterns of the substrates. This is the first report of the hydroxylation and methoxylation of tri- to tetra-CDDs by a fungal strain.  相似文献   

2.
Xiao P  Mori T  Kamei I  Kondo R 《Biodegradation》2011,22(5):859-867
1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) was used as the substrate for a degradation experiment with the white rot fungi Phlebia lindtneri GB-1027 and Phlebia brevispora TMIC34596, which are capable of degrading polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated biphenyls (PCBs). Pure culture of P. lindtneri and P. brevispora with DDT (25 μmol l−1) showed that 70 and 30% of DDT, respectively, disappeared in a low-nitrogen medium after a 21-day incubation period. The metabolites were analyzed using gas chromatography/mass spectrometry (GC/MS). Both fungi metabolized DDT to 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD), 2,2-bis(4-chlorophenyl)acetic acid (DDA) and 4,4-dichlorobenzophenone (DBP). Additionally, DDD was converted to DDA and DBP. DDA was converted to DBP and 4,4-dichlorobenzhydrol (DBH). While DBP was treated as substrate, DBH and three hydroxylated metabolites, including one dihydroxylated DBP and two different isomers of monohydroxylated DBH, were produced from fungal cultures, and these hydroxylated metabolites were efficiently inhibited by the addition of a cytochrome P-450 inhibitor, piperonyl butoxide. These results indicate that the white rot fungi P. lindtneri and P. brevispora can degrade DBP/DBH through hydroxylation of the aromatic ring. Moreover, the single-ring aromatic metabolites, such as 4-chlorobenzaldehyde, 4-chlorobenzyl alcohol and 4-chlorobenzoic acid, were found as metabolic products of all substrate, demonstrating that the cleavage reaction of the aliphatic-aryl carbon bond occurs in the biodegradation process of DDT by white rot fungi.  相似文献   

3.
Endrin is persistent organic pollutants that contaminate soil in many parts of the world. In this study, endrin was used as the substrate for a degradation experiment with the white rot fungi of the genus Phlebia. The results of tolerance test showed that the tolerance level of Phlebia acanthocystis and Phlebia brevispora to endrin was higher than that of other fungi, and the tolerance coefficient of both strains to 1.0 mg/L endrin exceeded 0.9 in solid PDA medium. P. acanthocystis and P. brevispora could degrade endrin efficiently in pure culture, especially P. acanthocystis had the highest degradability of more than 80% after 20 d incubation. Compared with low-nitrogen medium, PDB medium is more suitable for the biodegradability of two fungi. Several hydroxylated products such as 8-hydroxyendrin and two monohydroxyendrin were detected, indicating that endrin was initially branched to different monohydroxylated products in fungal degradation. Moreover, a carboxylic acid product was obtained from P. acanthocystis culture, suggesting that the carboxylation reaction occurred in bioconversion of endrin. The fungal cytochrome P450 enzymes play significant role in the in the initial hydroxylation process on endrin degradation. This is the first report that endrin is converted to hydroxylated and carboxylated metabolites by microorganisms.  相似文献   

4.
Toxic coplanar polychlorinated biphenyls (Co-PCBs) were used as substrates for a degradation experiment with white-rot fungus, Phlebia brevispora TMIC33929, which is capable of degrading polychlorinated dibenzo-p-dioxins. Eleven PCB congener mixtures (7 mono-ortho- and 4 non-ortho-PCBs) were added to the cultures of P. brevispora and monitored by high resolution gas chromatography and mass spectrometry (HRGC/HRMS). Five PCB congeners, 3,3′,4,4′-tetrachlorobiphenyl, 2,3,3′,4,4′-pentachlorobiphenyl, 2,3′,4,4′,5-pentachlorobiphenyl, 3,3′,4,4′,5-pentachlorobiphenyl, and 2,3′,4,4′,5,5′-hexachlorobiphenyl were degraded by P. brevispora. To investigate the fungal metabolism of PCB, each Co-PCB was treated separately by P. brevispora and the metabolites were analyzed by gas chromatography and mass spectrometry (GC/MS) and identified on the basis of the GC/MS comparison with the authentic compound. Meta-methoxylated metabolite was detected from the culture containing each compound. Additionally, para-dechlorinated and -methoxylated metabolite was also detected from the culture with 2,3,3′,4,4′-pentachlorobiphenyl, 2,3′,4,4′,5-pentachlorobiphenyl, and 2,3′,4,4′,5,5′-hexachlorobiphenyl, which are mono-ortho-PCBs. In this paper, we identified the congener specific degradation of coplanar PCBs by P. brevispora, and clearly proved for the first time by identifying the metabolites that the white-rot fungus, P. brevispora, transformed recalcitrant coplanar PCBs.  相似文献   

5.
Aims: To improve the digestibility of paddy straw to be used as animal feed by means of selective delignification using white rot fungi. Methods and Results: Solid state fermentation of paddy straw was carried out with some white rot fungi for 60 days. Different biochemical analyses, e.g. total organic matter (TOM) loss, hemicellulose loss, cellulose loss, lignin loss and in vitro digestibility, were carried out along with laccase, xylanase and carboxymethyl cellulase activity. The results were compared with that of a widely studied fungus Phanerochaete chrysosporium, which degraded 464 g kg?1 TOM and enhanced the in vitro digestibility from 185 to 254 g kg?1 after 60 days of incubation. Straw inoculated with Phlebia brevispora possessed maximum crude protein. Conclusions: All the tested white rot fungi efficiently degraded the lignin and enhanced the in vitro digestibility of paddy straw. Phlebia brevispora, Phlebia radiata and P. chrysosporium enhanced the in vitro digestibility almost to similar levels, while the loss in TOM was much lesser in P. brevispora and P. radiata when compared to P. chrysosporium. Significance and Impact of the Study: The study reflects the potential of P. brevispora and P. radiata as suitable choices for practical use in terms of availability of organic matter with higher protein value, selective ligninolysis and better digestibility.  相似文献   

6.
The hydrophilicity of 2,7-dichlorodibenzo-p-dioxin (2,7-DCDD), a model dioxin compound, increased when incubated with the culture filtrates of several strains of fungi. The possibility that the addition of these filtrates could enhance the biodegradation of 2,7-DCDD by the white-rot basidiomycetous fungus Phanerochaete sordida YK-624 was examined. The decrease of 2,7-DCDD after 3 weeks incubation in a YK-624 culture containing these filtrates was greater (30%) than that in the culture of YK-624 alone (15%). This is the first report describing the enhancement of dioxin decrease by the addition of a fungal filtrate.  相似文献   

7.
A variety of methods for feed development have been introduced during last few years. Bioprocessed agricultural residues may prove a better alternative to provide animal feed. For the purpose, some white rot fungi were allowed to degrade wheat straw up to 30 days under solid state conditions. Several parameters including loss in total organic matter, ligninolysis, in vitro digestibility of wheat straw and estimation of different antioxidant activities were studied. All the fungi were able to degrade lignin and enhance the in vitro digestibility. Among all the tested fungi, Phlebia brevispora degraded maximum lignin (30.6%) and enhanced the digestibility from 172 to 287 g/kg. Different antioxidant properties of fungal degraded wheat straw were higher as compared to the uninoculated control straw. Phlebia floridensis found to be more efficient organism in terms of higher antioxidant activity (70.8%) and total phenolic content (9.8 mg/ml). Thus, bioprocessing of the wheat straw with the help of these organisms seems to be a better approach for providing the animal feed in terms of enhanced digestibility, higher protein content, higher antioxidant activity and availability of biomass.  相似文献   

8.
Summary Of eight white-rot fungi examined, seven fungi grew on nitrogen-limited poplar wood meal medium and degraded 14C-lignin in wood meal to 14CO2. Increased oxygen enhanced both the rate and extent of degradation. However, whereas Pleurotus ostreatus, Pycnoporus cinnabarinus 115 and Pycnoporus cinnabarinus A-360 degraded 12–17% of 14C-(U)-lignin of poplar wood to 14CO2 also in an air atmosphere, Sporotrichum pulverulentum, Phlebia radiata 79 and Phanerochaete sordida 37 degraded only 1–5% under these conditions. Addition of cellulose and glucose to the poplar wood medium stimulated degradation of 14C-(RING)-lignin of poplar wood by Phlebia radiata 79 but repressed degradation by Polyporus versicolor and Pleurotus ostreatus. Cellulose added to the wood meal medium had no effect on the degradation of lignin by Phanerochaete sordida 37 and Sporotrichum pulverulentum but glucose slightly repressed lignin degradation by these fungi. Those white-rot fungi which were considered as preferentially lignin attacking fungi could degrade 14C-(RING)-lignin of poplar wood efficiently under 100% oxygen. They did not require an extra energy source in addition to wood meal polysaccharides for rapid ring cleavage and they degraded up to 50–60% of the 14C-lignin to 14CO2 in 6–7 weeks at a maximum rate of 3–4% per day.These results were reported in part at the Journées Internationales d'Etudes du Groupe Polyphenols, 29. 9.–1. 10. 1982, Université Paul Sabatier, Toulouse, France  相似文献   

9.
Biodecolourisation of some industrial dyes by white-rot fungi   总被引:1,自引:0,他引:1  
Eight white-rot fungal strains were screened for biodecolourisation of eight dyes commercially employed in various industries. Decolourisation of Poly R 478 was used as a standard to ascertain the dye-decolourisation potential of various fungi. All the fungi tested significantly decolourised Poly R 478 on solid agar medium. When tested in a nitrogen-limited broth medium, Dichomitus squalens, Irpex flavus, Phlebia spp. and Polyporus sanguineus were better industrial dye decolourisers than Phanerochaete chrysosporium.  相似文献   

10.
Forty-two white-rot fungi isolated in South America were incubated with long fibre sugar cane bagasse (LFB). The residual composition of LFB was determined after white-rot decay at 30 and 60 days. The ratio of residual lignin to residual lignin to residual cellulose (RL/RC) of untreated material (LFB) was 0.48. After white-rot-decay, the residual material with lower RL/RC ratios indicated that mainly lignin was degraded. In only 30 days, Phlebia sp. MVHC 5535, Athelia sp. MVHC 5509 and Spongipellis pachyodon MVHC 5019 caused a decrease in the RL/RC ratio to 0.36, 0.37 and 0.38, respectively, while it took 60 days for Ganoderma applanatum MVHC 5347, Hyphodontia sp. MVHC 5544, Panus tigrinus MVHC 5400, Stereum sp. MVHC 5113, Phellinus punctatus MVHC 5346 and MVHC 6388 to reach a ratio lower than 0.40. No correlation was found between the amount of some ligninolytic enzymes secreted and the residual composition of bagasse after white-rot fungi fermentation. Most of the fungal strains caused an increase in the relative amount of residual cellulose, indicating that hemicellulose was the preferred energy source.  相似文献   

11.
Seven white-rot fungi, known to degrade complex biomolecules and xenobiotics were used for investigation on biodegradation of lantadene A (LA), the bioactive pentacyclic triterpenoid of Lantana camara. Pleurotus sajor-caju and Merulius tremellosus PRL-2845 did not degrade LA. Trametes versicolor MTCC-138, Heterobasidion annosum MTCC-146, Phellinus pini RAB-83-19, Pleurotus ostreatus MTCC-142 and Phlebia radiata 2 utilized LA to the extent of 11–15.7%. This is the first report on the fungal degradation of a pentacyclic triterpenoid.  相似文献   

12.
Two kinds of bacteria having different-structured angular dioxygenases—a dibenzofuran (DF)-utilizing bacterium, Terrabacter sp. strain DBF63, and a carbazole (CAR)-utilizing bacterium, Pseudomonas sp. strain CA10—were investigated for their ability to degrade some chlorinated dibenzofurans (CDFs) and chlorinated dibenzo-p-dioxins (CDDs) (or, together, CDF/Ds) using either wild-type strains or recombinant Escherichia coli strains. First, it was shown that CAR 1,9a-dioxygenase (CARDO) catalyzed angular dioxygenation of all mono- to triCDF/Ds investigated in this study, but DF 4,4a-dioxygenase (DFDO) did not degrade 2,7-diCDD. Secondly, degradation of CDF/Ds by the sets of three enzymes (angular dioxygenase, extradiol dioxygenase, and meta-cleavage compound hydrolase) was examined, showing that these enzymes in both strains were able to convert 2-CDF to 5-chlorosalicylic acid but not other tested substrates to the corresponding chlorosalicylic acid (CSA) or chlorocatechol (CC). Finally, we tested the potential of both wild-type strains for cooxidation of CDF/Ds and demonstrated that both strains degraded 2-CDF, 2-CDD, and 2,3-diCDD to the corresponding CSA and CC. We investigated the sites for the attack of angular dioxygenases in each CDF/D congener, suggesting the possibility that the angular dioxygenation of 2-CDF, 2-CDD, 2,3-diCDD, and 1,2,3-triCDD (10 ppm each) by both DFDO and CARDO occurred mainly on the nonsubstituted aromatic nuclei.  相似文献   

13.
The white-rot fungus Phlebia brevispora BAFC 633 produces laccases in large proportions. In this work P. brevispora BAFC 633 was grown on Pinus taeda wood chips in 10-L bioreactors. To select the biopulping experimental conditions, we analyzed the variables affecting enzymatic laccase activity in the culture supernatants, indicating that the suitable incubation temperature was 30 °C in order to promote enzyme stability. Phlebia brevispora BAFC 633 secreted 744 U/g of laccase, selectively removing lignin during biotreatment of wood chips, causing a reduction in Kappa number and 10% weight loss, and creating a more open structure and better access to the pulping liquor, which would require less chemical consumption, thus diminishing the environmental impact of the chemical pulping process.These results support the biotechnological potential of P. brevispora BAFC 633 for biopulping processes and enhance the potential for bioprospecting native isolates of the microflora of our country's natural environment.  相似文献   

14.
Widespread of heavy metals contamination has led to several environmental problems. Some biological methods to remove heavy metals from contaminated wastewater are being widely explored. In the present study, the efficiency of a white-rot fungus, Phlebia brevispora to remove different metals (Pb, Cd and Ni) has been evaluated. Atomic absorption spectroscopy of treated and untreated metal containing water revealed that all the metals were efficiently removed by the fungus. Among all the used metals, cadmium was the most toxic metal for fungal growth. Phlebia brevispora removed maximum Pb (97·5%) from 100 mmol l−1 Pb solution, which was closely followed by Cd (91·6%) and Ni (72·7%). Scanning electron microscopic images revealed that the presence of metal altered the morphology and fine texture of fungal hyphae. However, the attachment of metal on mycelia surface was not observed during energy-dispersive X-ray analysis, which points towards the intracellular compartmentation of metals in vacuoles. Thus, the study demonstrated an application of P. brevispora for efficient removal of Pb, Cd and Ni from the metal contaminated water, which can further be applied for bioremediation of heavy metals present in the industrial effluent.  相似文献   

15.
《Biomass》1988,15(2):93-101
Different rates of wood decay and ligninolytic activity were found in wood decayed by various white-rot fungi. Chemical and ultrastructural analyses showed wood decayed by Coriolus versicolor consisted of a nonselective attack on all cell wall components. Lignin degradation was restricted to the cell wall adjacent to hyphae or around the circumference of cell lumina. Decay by Phellinus pini, Phlebia tremellosus, Poria medullapanis and Scytinostroma galactinum was selective for lignin degradation. Secondary walls were void of lignin and middle lamellae were extensively degraded. A diffuse attack on lignin occurred throughout all cell wall layers. Variation in ligninolytic activity was found among strains of Phanerochaete chrysosporium. Differences in weight loss as well as lignin and polysaccharide degradation were also found when wood of different coniferous and deciduous tree species was decayed by various white-rot fungi.  相似文献   

16.
Selective Degradation of Wood Components by White-Rot Fungi   总被引:6,自引:0,他引:6  
In order to find naturally occurring white-rot fungi which preferentially degrade lignin. 25 different species of such fungi were cultivated on pine wood blocks and on kraft lignin agar plates with and without cellulose. Due to differences in phenol oxidase reactions on the kraft lignin agar plates, the 25 fungi could be divided into two groups, 1 and 2, which also differed in other properties. The three Group I fungi Sporotrichum pulverulentum, Phanerochaete sp. L1 and Polyporus dichrous produced high levels of endo-l,4-β-glucanase and cellobiose:quinone oxidoreductase in shaking cellulose flasks and a low level of phenol oxidase in standing wood meal flasks, The four fungi Merulius tremellosus, Phlebia radiata, Pycuoporus cinnabarinus and Pleurotus ostreatus from Group 2, on the other hand, produced low levels of endo-1,4-β-glucanase and cellobiose:.quinone oxidoreductase in the cellulose. flasks and a high level of phenol oxidase in the wood meal flasks. Analyses of pine wood blocks degraded by the above-mentioned fungi in the presence of either malt extract, asparagine or NH4H2PO4 revealed that malt extract gave good lignin degradation. In the presence of this nutrient source. P. cinnabarinus, at 3.4% weight loss, even degraded 12.5% lignin without loss of cellulose or mannan. No common degradation pattern was, however, obtained using mall extract, asparagine or NH4H2PO4, It is suggested that while-rot fungi, which preferentially degrade lignin, may be found among Group 2 fungi producing large amounts of phenol oxidases.  相似文献   

17.
Bioprocessing of wheat straw was carried out by Phlebia brevispora under solid state conditions. Effect of different supplements on lignocellulolytic enzymes production, degradation of straw cell wall fibers and its resultant effect on nutritional quality of wheat straw were studied. Ammonium chloride and malt extract were more effective in terms of ligninolysis and enhanced in vitro digestibility. The concentration of the selected supplements and the moisture content was worked out using response surface methodology in order to minimize the loss in total organic matter so as to selectively degrade lignin. The experiment was scaled up to batches of 200 g under optimized conditions and the degraded substrate was analyzed for its biochemical properties. P. brevispora degraded 290 g/kg of lignin and enhanced the in vitro digestibility from 150 to 268 g/kg (78%). Crude protein, amino acids, total phenolic contents and antioxidant properties were significantly higher in degraded straw.  相似文献   

18.
Due to their outstanding capability of degrading the recalcitrant biomacromolecule lignin, white rot fungi have been attracting interest for several technological applications in mechanical pulping and wood surface modification. However, little is known about the time course of delignification in early stages of colonisation of wood by these fungi. Using a Fourier transform near infrared (FT-NIR) spectroscopic technique, lignin loss of sterilised spruce wood shavings (0.4–2.0 mm particle size) that had been degraded by various species of white rot fungi could be monitored already during the first 2 weeks. The delignification kinetics of Dichomitus squalens, three Phlebia species (Phlebia brevispora, Phlebia radiata and Phlebia tremellosa), three strains of Ceriporiopsis subvermispora as well as the white rot ascomycete Hypoxylon fragiforme and the basidiomycete Oxyporus latemarginatus were determined. Each of the fungi tested was able to reduce the lignin content of spruce wood significantly during the first week. The amount of delignification achieved by the selected white rot fungi after 2 weeks ranged from 7.2% for C. subvermispora (FPL 105.752) to 2.5% for P. radiata. Delignification was significant (P = 95%) already after 3 days treatment with C. subvermispora and P. tremellosa. Activities of extracellular ligninolytic enzymes (laccase, manganese peroxidase and/or lignin peroxidase), expressed by each of the tested fungi, were determined. Lignin was degraded when peroxidase activity was detected in the fungal cultures, but only a low level of correlation between enzyme activities and the extent of delignification was found.  相似文献   

19.
Forty-six pulp-bleaching fungi were screened for production of key enzymes for conversion of polychlorinated dibenzo-p-dioxins—lignin peroxidase (LiP), manganese peroxidase (MnP), and manganese-independent peroxidase (MiP)—under various conditions that would allow their utilization in the environment. Of 38 MnP-producing strains with MiP activity, 22 produced LiP. Three of the new isolates, Bjerkandera sp. strains MS191, MS325, and MS1167, were the best producers of the three different peroxidases, and had reasonable growth rates. The most promising Bjerkandera sp. strain, MS325, exhibited significant levels of LiP and MnP activities under various conditions, e.g., nutrient nitrogen-sufficient or -limited conditions, conditions with or without Mn(II), and changes in temperature (15–37°C). Furthermore, the ability of this strain to degrade 1,3,6,8-tetrachlorodibenzo-p-dioxin was confirmed. The results presented here indicate that utilization of Bjerkandera sp. strain MS325 on a practical scale in the environment has several advantages over many white rot fungi, which produce extracellular peroxidases only under specific conditions such as nutrient limitation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号