首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prohormones are directed from the trans-Golgi network to secretory granules of the regulated secretory pathway. It has further been proposed that prohormone conversion by endoproteolysis may be necessary for subsequent retention of peptides in granules and to prevent their release by the so-called "constitutive-like" pathway. To address this directly, mutant human proinsulin (Arg/Gly(32):Lys/Thr(64)), which cannot be cleaved by conversion endoproteases, was expressed in primary rat islet cells by recombinant adenovirus. The handling of the mutant proinsulin was compared with that of wild-type human proinsulin. Infected islet cells were pulse labeled and both basal and stimulated secretion of radiolabeled products followed during a chase. Labeled products were quantified by high-performance liquid chromatography. As expected, the mutant proinsulin was not converted at any time. Basal (constitutive and constitutive-like) secretion was higher for the mutant proinsulin than for wild-type proinsulin/insulin, but amounted to <1% even during a prolonged (6-h) period of basal chase. There was no difference in stimulated (regulated) secretion of mutant and wild-type proinsulin/insulin at any time. Thus, in primary islet cells, unprocessed (mutant) proinsulin is sorted to the regulated pathway and then retained in secretory granules as efficiently as fully processed insulin.  相似文献   

2.
d-glyceraldehyde stimulated insulin secretion from isolated rat pancreatic islets in static incubation and perifusion systems. At low concentrations (2–4 mM) d-glyceraldehyde was a more potent secretagogue than glucose. The insulinotropic action of 15 mM d-glyceraldehyde was not affected by d-mannoheptulose, was potentiated by cytochalasin B (5 μg/ml) and theophylline (4 mM), and was inhibited by both adrenalin (2 μM) and somatostatin (10 μg/ml). D-glyceraldehyde at a concentration of 1.5 mM produced a 10-fold increase of l-[4,5-3 H]leucine incorporation into proinsulin and insulin without a significant increase into other islet proteins. Glucose at 1.5 mM did not stimulate proinsulin biosynthesis. d-Glyceraldehyde at concentrations higher than 1.5 mM, in marked contrast to glucose, progressively inhibited incorporation of labelled leucine into proinsulin + insulin and other islet proteins. d-glyceraldehyde also inhibited the oxidation of glucose. l-Glyceraldehyde did not stimulate proinsulin biosynthesis and had less effect than the d-isomer on insulin release and glucose oxidation. The results strongly suggest that metabolites below d-glyceraldehyde-3-P are signals for insulin biosynthesisand release. Interaction of d-glyceraldehyde with a “membrane receptor” cannot, however, be excluded with certainty.  相似文献   

3.
The purpose of these experiments was to determine whether insulin-related peptides, larger than proinsulin, could be detected in pancreatic islet cells. Catfish pancreatic islets were incubated with radiolabeled amino acids. After 15- to 60-min incubation, two acid-alcohol-extractable peptides, larger than proinsulin, were detected which were approximately of Mr = 12,000 and 11,000 (12 K and 11K, respectively). They migrated as single polypeptide chains by sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis under reducing conditions, and were therefore not aggregates of insulin or proinsulin. The 12 K protein had identical mobility with catfish preoproinsulin synthesized in a wheat germ cell-free system. On standard electrophoresis at pH 8.9, the 12 K protein migrated separately from proinsulin and was at least 65% one protein with two to three minor contaminants. The 12 K and 11 K proteins were chemically related to insulin and proinsulin as shown by tryptic peptide analysis, using cation exchange resin chromatography, and by two-dimensional tryptic peptide maps. Analysis of the tryptic digest of the 12 K protein, compared to proinsulin after leucine aminopeptidase treatment, suggested that the NH2 terminus of the larger protein was different from that of proinsulin. These peptides were specifically bound to anti-insulin antibody. The binding was only 5 to 8% of the protein added, but was specific for the 12 K and 11 K proteins when the immunoprecipitates were examined by electrophoresis and not from contaminating proinsulin. During the continuous incubation of the islets with [3H]leucine, 12 K and 11 K proteins were synthesized in the cell before proinsulin. When islets were first incubated with [3H]leucine for 30 min followed by incubation with excess unlabeled leucine, the 12 K and 11 K proteins appeared to show a precursor-product relationship to proinsulin and insulin. Even when total islet protein synthesis was inhibited by cycloheximide (100 microgram/ml), proinsulin continued to be synthesized for up to 2 h. This suggested that the conversion of the proinsulin precursors to proinsulin in the fish is a post-translational event.  相似文献   

4.
5.
The production of human proinsulin in Escherichia coli usually leads to the formation of inclusion bodies. As a consequence, the recombinant protein must be isolated, refolded under suitable redox conditions, and enzymatically converted to the biologically active insulin. In this study we describe a detailed in vitro renaturation protocol for human proinsulin that includes native structure formation and the enzymatic conversion to mature insulin. We used a His(8)-Arg-proinsulin that was renatured from the completely reduced and denatured state in the presence of a cysteine/cystine redox couple. The refolding process was completed after 10-30 min and was shown to be strongly dependent on the redox potential and the pH value, but not on the temperature. Refolding yields of 60-70% could be obtained even at high concentrations of denaturant (3M guanidinium-HCl or 4M urea) and protein concentrations of 0.5mg/ml. By stepwise renaturation a concentration of about 6 mg/ml of native proinsulin was achieved. The refolded proinsulin was correctly disulfide-bonded and native and monomeric as shown by RP-HPLC, ELISA, circular dichroism, and analytical gel filtration. Treatment of the renatured proinsulin with trypsin and carboxypeptidase B yielded mature insulin.  相似文献   

6.
The gene encoding human proinsulin has been fused in-frame with the E. coli alkaline phosphatase gene (pho A) (EC 3.1.3.1). Two constructions are described. One construction consists of the entire proinsulin gene fused to the 5'-terminal end of pho A. In the other construction a 42 base pair DNA fragment has been deleted from the 3'-terminal end of the proinsulin gene. The two purified fusion proteins are enzymatically active showing a specific activity of 10-15 U/mg and 18-25 U/mg, respectively. The first construction exhibited insulin antigenicity and was used to design a simple competitive ELISA for insulin. The lower detection limit was found to be at least 2.5 ng/ml. Both fusion proteins were also shown to have potential for use in a competitive ELISA for proinsulin.  相似文献   

7.
Kim SY  Kang SK  Lee DG  Park YG  Lee YC  Chung JC  Kim CH 《Life sciences》2000,67(11):1251-1263
The inhibitory effects of the traditional herbal medicine Jindangwon (JDW) on streptozotocin (ST)-induced diabetic mellitus were studied using the ST-treated diabetic model. Glucokinase activity of pancreatic islets was severely impaired by ST treatment. However, when ST-treated islets were treated with 1 mg/ml of JDW, the enzyme activities of glucokinase and hexokinase were protected, glucose-6-phosphatase was not. When the effects of JDW on ST-induced ATP/ADP ratio of islets were assayed, JDW was effective in restoring of ATP/ADP ratio. In addition, ST decreased the enzyme activities of PDH, while JDW had a protective effect on the enzyme. ST-induced cGMP accumulation was significantly inhibited by JDW treatment. Furthermore, ST-induced nitrite formation was significantly inhibited by JDW treatment. JDW also showed the suppressed nitrite production in ST-treated pancreatic islet cells. When the islets (200/condition) were treated with ST (5 mM for 30 min), and then JDW was added to the ST-treated cells, 1.0 mg/ml of JDW showed the activated and recovered aconitase activity in pancreatic islet cells. When the effect of ST on the gene expression of pancreatic GLUT2 and glucokinase were examined, the level of GLUT2 and glucokinase mRNA in pancreatic islets was significantly decreased. However, JDW protected and improved the expression of protein and genes, indicating that JDW is effective on ST-induced inhibition of gene expression of GLUT2, glucokinase and proinsulin in islets. These results suggested that JDW is effective in this model to treat ST-induced diabetes.  相似文献   

8.
Specific binding of the C-peptide of proinsulin was evaluated using a transplantable NEDH rat islet cell tumour predominantly composed of insulin-secreting B-cells. Cultured tumour B-cells exhibited greater than 90% viability assessed by trypan blue exclusion, and retained the ability to form tumours with accompanying hypoglycaemia and hyperinsulinaemia after reimplantation. During binding experiments with synthetic rat C-peptide I and iodinated tyrosylated rat C-peptide I, turnout B-cells exhibited 54±6% specific binding. Displacement of tracer increased with increasing concentrations of unlabelled rat C-peptide I (0.25–1,000 ng/ml), and the specificity of binding was substantiated by reduced displacement with human C-peptide. Scatchard analysis of specific C-peptide binding revealed a curvilinear plot with upward concavity. The demonstration of specific C-peptide binding to insulin-secreting B-cells provides evidence for a physiological role of proinsulin C-peptide.  相似文献   

9.
Immunization against insulin, insulin B chain, or B chain peptide B(9-23) (preproinsulin peptide II(33-47)) prevents diabetes in the nonobese diabetic (NOD) mouse. Whether or not peptide II(33-47) is the only proinsulin determinant recognized by CD4 T cells remains unclear. Using two peptide libraries spanning the entire sequence of preproinsulin I and preproinsulin II, respectively, we identified T cells specific for four proinsulin epitopes within the islet cell infiltrate of prediabetic female NOD mice. These epitopes were among immunogenic epitopes to which a T cell response was detected after immunization of NOD mice with individual peptides in CFA. Immunogenic epitopes were found on both isoforms of insulin, especially proinsulin II, which is the isoform expressed in the thymus. The autoimmune response to proinsulin represented only part of the immune response to islet cells within the islet cell infiltrate in 15-wk-old NOD mice. This is the first systematic study of preproinsulin T cell epitopes in the NOD mouse model.  相似文献   

10.
We have shown previously that alloxan and streptozotocin, two major diabetogenic agents, cause DNA strand breaks in rat pancreatic islets and stimulate nuclear poly(ADP-ribose) synthetase, thereby depleting intracellular NAD level and inhibiting proinsulin synthesis (Okamoto, H. (1981) Mol. Cell. Biochem. 37, 43-61; Yamamoto, H., Uchigata, Y., and Okamoto, H. (1981) Nature 294, 284-286). In the present study, superoxide dismutase and catalase, scavengers of radical oxygens, were found to protect against islet DNA strand breaks and inhibition of proinsulin synthesis induced by alloxan. The radical scavengers did not affect islet DNA strand breaks or inhibition of proinsulin synthesis induced by streptozotocin. On the other hand, compounds that inhibit islet nuclear poly(ADP-ribose) synthetase were found to protect against alloxan- as well as streptozotocin-induced inhibition of proinsulin synthesis. The poly(ADP-ribose) synthetase inhibitors were ineffective in protection against DNA strand breaks induced by the agents. These results may provide an important clue for elucidating the prevention of insulin-dependent diabetes as well as for understanding the cause of diabetes.  相似文献   

11.
Two proteins larger than proinsulin (estimated molecular weight 11,000 and 10,000 daltons), were observed when labeled rat islet proteins were electrophoresed on sodium dodecyl sulfate gels. The proteins are synthesized before proinsulin, turn over more rapidly than proinsulin, their synthesis is stimulated by glucose, and they are specifically bound by anti-insulin antibodies.  相似文献   

12.
Poly(a)-rich mRNA has been isolated from catfish pancreatic islet total nucleic acid. Cell-free translation of the mRNA by wheat germ extracts yielded a protein of 11 000-12 000 molecular weight, estimated by sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis. This peptide is larger than catfish proinsulin, but contains tryptic peptides of proinsulin. Its synthesis comprises up to 23% of the cell-free product, depending on the conditions of cell-free synthesis. Synthesis is inhibited by 7-methylguanosine 5'-monophosphate suggesting the presence of a 7-methylguanosine cap on the 5' end of catfish proinsulin mRNA. Sucrose gradient centrifugation of the islet poly(A)-rich mRNA yielded 8S and 12S peaks. These fractions were translated with wheat germ extracts and it was determined that over 60% of the islet mRNA-dependent protein from the 8S fraction was preproinsulin. The 8S mRNA fraction was electrophoresed on 3% agarose-6 M urea gels and demonstrated to be several bands, ranging from 100 000-200 000 molecular weight.  相似文献   

13.
T cells specific for proinsulin and islet-specific glucose-6-phosphatase catalytic subunit related protein (IGRP) induce diabetes in nonobese diabetic (NOD) mice. TCR transgenic mice with CD8(+) T cells specific for IGRP(206-214) (NOD8.3 mice) develop accelerated diabetes that requires CD4(+) T cell help. We previously showed that immune responses against proinsulin are necessary for IGRP(206-214)-specific CD8(+) T cells to expand. In this study, we show that diabetes development is dramatically reduced in NOD8.3 mice crossed to NOD mice tolerant to proinsulin (NOD-PI mice). This indicates that immunity to proinsulin is even required in the great majority of NOD8.3 mice that have a pre-existing repertoire of IGRP(206-214)-specific cells. However, protection from diabetes could be overcome by inducing islet inflammation either by a single dose of streptozotocin or anti-CD40 agonist Ab treatment. This suggests that islet inflammation can substitute for proinsulin-specific CD4(+) T cell help to activate IGRP(206-214)-specific T cells.  相似文献   

14.
The pancreatic B cell has been used as a model to compare the release of newly synthesized prohormone/hormone with that of stored hormone. Secretion of newly synthesized proinsulin/insulin (labeled with [3H]leucine during a 5-min pulse) and stored total immunoreactive insulin was monitored from isolated rat pancreatic islets at basal and stimulatory glucose concentrations over 180 min. By 180 min, 15% of the islet content of stored insulin was released at 16.7 mM glucose compared with 2% at 2.8 mM glucose. After a 30-min lag period, release of newly synthesized (labeled) proinsulin and insulin was detected; from 60 min onwards this release was stimulated up to 11-fold by 16.7 mM glucose. At 180 min, 60% of the initial islet content of labeled proinsulin was released at 16.7 mM glucose and 6% at 2.8 mM glucose. Specific radioactivity of the released newly synthesized hormone relative to that of material in islets indicated its preferential release. A similar degree of isotopic enrichment of released, labeled products was observed at both glucose concentrations. Quantitative HPLC analysis of labeled products indicated that glucose had no effect on intracellular proinsulin to insulin conversion; release of both newly synthesized proinsulin and insulin was sensitive to glucose stimulation; 90% of the newly synthesized hormone was released as insulin; and only 0.5% of proinsulin was rapidly released (between 30 and 60 min) in a glucose-independent fashion. It is thus concluded that the major portion of released hormone, whether old or new, processed or unprocessed, is directed through the regulated pathway, and therefore the small (less than 1%) amount released via a constitutive pathway cannot explain the preferential release of newly formed products from the B cell.  相似文献   

15.
Thyrotropin-releasing hormone (TRH) and insulin were measured by radioimmunoassay in acetic-acid extracts of 19 pancreatic islet cell tumors induced by streptozotocin and nicotinamide in rats. In addition, gel filtration properties of TRH-immunoreactivity and immunoreactive insulin (IRI) were examined in 5 and 14 tumors, respectively. TRH was demonstrated in 10 of 19 tumors, with a mean of 166 +/- 47 (SEM) pg/mg wet weight, whereas the concentration was less than 3 pg/mg wet weight in the other tumors. In contrast, all tumors contained IRI, with a mean of 11.0 +/- 1.6 micrograms/mg wet weight. Ten tumors in which TRH was demonstrated contained more IRI than those in which TRH was not detected (13.1 +/- 1.8 vs 6.5 +/- 1.7 micrograms/mg wet weight, P less than 0.02). After gel filtration, all TRH immunoreactivity was eluted at the same place as synthetic TRH in the 5 tumors. In addition, gel filtration elutes showed essentially the same pattern of IRI in the 14 tumors, with 3 peaks. The predominant IRI peak comigrated with marker insulin (95.7 +/- 0.8%), another prominent peak occurred coincident with proinsulin standard (3.3 +/- 0.5%), a third peak was present in the void volume (0.28 +/- 0.04%). These distributions of IRI were similar to those in extracts of normal pancreases. The present studies demonstrate TRH immunoreactivity in pancreatic islet cell tumors induced by streptozotocin and nicotinamide in rats. Chemically induced insulinomas can serve as a model for insulin storage which is analogous to islet B cells.  相似文献   

16.
The regulation of the growth of the pancreatic beta-cell is poorly understood. There are previous indications of a role of GH in the growth and insulin production of the pancreatic islets. In the present study we present evidence for a direct long-term effect of GH on proliferation and insulin biosynthesis of pancreatic beta-cells in monolayer culture. In culture medium RPMI 1640 supplemented with 2% normal human serum islets or dissociated islet cells from newborn rats maintained their insulin-producing capacity. When supplemented with 1-1000 ng/ml pituitary or recombinant human GH the islet cells attached, spread out, and proliferated into monolayers mainly consisting of insulin-containing cells. The number of beta-cells in S-phase was increased from 0.9-6.5% as determined by immunochemical staining of bromodeoxyuridine incorporated into insulin-positive cells. The increase in cell number was accompanied with a continuous increase in insulin release to the culture medium reaching a 10- 20-fold increase after 2-3 months with a half-maximal effect at about 10 ng/ml human GH. The biosynthesis of (pro)insulin was markedly increased with a normal rate of conversion of proinsulin to insulin. It is concluded that GH is a potent growth factor for the differentiated pancreatic beta-cell.  相似文献   

17.
The effect of somatostatin on glucose-induced insulin secretion and cyclic AMP accumulation in isolated islets from obese, hyperglycemic ob/ob mice was studied in a microperifusion system. The normal biphasic pattern of insulin release as well as the inhibitory pattern of insulin release produced by somatostatin (0.5--1 microgram/ml) was matched by similar changes in the intracellular concentration of cyclic AMP. When islets were stimulated by glucose (3 mg/ml) plus 3-isobutyl-1-methylxanthine (0.1 mM), somatostatin (0.5 microgram/ml) failed to inhibit insulin secretion or cyclic AMP formation in the second phase whereas in the first phase both parameters were significantly reduced by somatostatin (0.5 microgram/ml). In batch-type incubations it was shown that addition of excess calcium (to 6 mM) reversed this inhibition. In the second phase calcium potentiated the (glucose + 3-isobutyl-1-methylxanthine)-stimulated insulin secretion without affecting the cyclic AMP production. This potentiation was inhibited by somatostatin (0.1 microgram/ml). Somatostatin (1 microgram/ml) inhibited adenylate cyclase activity in islet homogenates. No effect of somatostatin on islet glucose utilization could be demonstrated. The results indicate a dual action of somatostatin in the inhibition of insulin release, one involving the islet adenylate cyclase and one affecting the islet uptake of calcium.  相似文献   

18.
The role of intact proinsulin and adiponectin in endothelial dysfunction and insulin resistance has been receiving increasing attention. This study investigates the effect of PPARgamma stimulation or beta-cell stimulation on metabolic and vascular parameters in patients with type 2 diabetes. In our study, 173 type 2 diabetic patients were recruited and randomly assigned to pioglitazone 45 mg or glimepiride 1 - 6 mg treatment. Intima media thickness of the carotid artery, glycemic control, insulin resistance, adiponectin and intact proinsulin levels were assessed at baseline and after six months of treatment. Despite similar improvements in metabolic control (HbA (1c) after 24 weeks: - 0.8 +/- 0.9% [pioglitazone] vs. - 0.6 +/- 0.8% [glimepiride]; mean +/- SD; p < 0.0001, respectively), improvements in intima media thickness (- 0.033 +/- 0.052 mm; p < 0.0001), proinsulin intact (- 5.92 +/- 10.04 pmol/l; p < 0.0001), adiponectin (10.9 +/- 6.3 microg/ml; p < 0.0001) and HOMA score (- 2.21 +/- 3.40; p < 0.0001) were observed by pioglitazone but not glimepiride treatment. Reduction in intima media thickness was correlated with improved insulin sensitivity (r = 0.29; p = 0.0003), and proinsulin intact levels (r = 0.22; p = 0.006), while an inverse correlation was found with adiponectin levels (r = - 0.37; p < 0.0001). Measurement of adiponectin and intact proinsulin enables characterization of the metabolic situation and an estimation of atherosclerotic risk in patients with type 2 diabetes.  相似文献   

19.
The effect of somatostatin on glucose-induced insulin secretion and cyclic AMP accumation in isolated islets from obese, hyperglycemic ob/ob mice was studied in a microperifusion system. The normal biphasic pattern of insulin release as well as the inhibitory pattern of insulin release produced by somatostatin (0.5–1 μg/ml) was matched by similar changes in the intracellular concentration of cyclic AMP. When islets were stimulated by glucose (3 mg/ml) plus 3-isobutyl-1-methylxanthine (0.1 mM), somatostatin (0.5 μg/ml) failed to inhibit insulin secretion or cyclic AMP formation in the second phase whereas in the first phase both parameters were significantly reduced by somatostatin (0.5 μg/ml). In batch-type incubations it was shown that addition of excess calcium (to 6 mM) reversed this inhibition. In the second phase calcium potentiated the (glucose + 3-isobutyl-1-methylxanthine)-stimulated insulin secretion without affecting the cyclic AMP production. This potentiation was inhibited by somatostatin (0.1 μg/ml). Somatostatin (1 μg/ml) inhibited adenylate cyclase activity in islet homogenates. No effect of somatostatin on islet glucose utilization could be demonstrated.The results indicate a dual action of somatostatin in the inhibition of insulin release, one involving the islet adenylate cyclase and one affecting the islet uptake of calcium.  相似文献   

20.
《The Journal of cell biology》1986,103(6):2273-2281
Proinsulin is a single polypeptide chain composed of the B and A subunits of insulin joined by the C-peptide region. Proinsulin is converted to insulin during the maturation of secretory vesicles by the action of two proteases and conversion is inhibited by ionophores that disrupted intracellular H+ gradients. To determine if conversion of prohormone to hormone actually occurs in an acidic secretory vesicle, cultured rat islet cells were incubated in the presence of 3-(2,4- dinitroanilino)-3' amino-N-methyldipropylamine (DAMP), a basic congener of dinitrophenol that concentrates in acidic compartments and is retained there after aldehyde fixation. The cells were processed for indirect protein A-gold colocalization of DAMP, using a monoclonal antibody to dinitrophenol, and proinsulin, using a monoclonal antibody that exclusively reacts with the prohormone. The average density of DAMP-specific gold particles in immature secretory vesicles that contained proinsulin was 71/micron 2 (18 times cytoplasmic background), which indicated that this compartment was acidic. However, the density of DAMP-specific gold particles in the insulin-rich mature secretory vesicle averaged 433/micron 2. This suggests that although proinsulin conversion occurs in an acidic compartment, the secretory vesicles become more acidic as they mature. Since the concentration of anti- proinsulin IgG binding in secretory vesicles is inversely proportional to the conversion of proinsulin to insulin, we were able to determine that maturing secretory vesicles had to reach a critical pH before proinsulin conversion occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号