首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
雷洛昔芬和泰莫西芬是人工合成雌激素受体调节剂,具有与雌激素受体的高亲和力,并且拥有在不同的靶组织可分别表现为雌激素 激动剂和拮抗剂的特性,因此又被称为选择性雌激素受体调节剂,这类药物的出现为患绝经后综合征的女性病人提供了新的用药选择。着 重综述雷洛昔芬和泰莫西芬等具代表性的选择性雌激素受体调节剂在绝经后女性中的应用研究进展。  相似文献   

2.
Tibolone, selective estrogen receptor modulators (SERMs) like tamoxifen and raloxifene, and estrogen (±progestogen) treatments prevent bone loss in postmenopausal women. They exert their effects on bone via the estrogen receptor (ER) and the increase in bone mass is due to resorption inhibition. The effect of SERMs on bone mineral density is less than that with the other treatments, but the SERM raloxifene still has a positive effect on vertebral fractures. In contrast to tibolone and estrogens (±progestogen), SERMs do not treat climacteric complaints, whilst estrogen plus progestogen treatments cause a high incidence of bleeding. Estrogen plus progestogen combinations have compromising effects on the breast. Tibolone and SERMs do not stimulate the breast or endometrium. Unlike SERMs, tibolone does not posses antagonistic biological effects via the ER in these tissues. Estrogenic stimulation in these tissues is prevented by local metabolism and inhibition of steroid metabolizing enzymes by tibolone and its metabolites. SERMs and estrogen (±progestogen) treatments increase the risk of venous thromboembolism (VTE), whilst estrogen (±progestogen) combinations have unwanted effects on cardiovascular events. So far, no detrimental effects of tibolone have been observed with respect to VTE or cardiovascular events. The clinical profile of tibolone therefore has advantages over those of other treatment modalities. It is also clear that tibolone is a unique compound with a specific mode of action and that it belongs to a separate class of compounds that can best be described as selective, tissue estrogenic activity regulators (STEARs).  相似文献   

3.
SERMs bind to both estrogen receptor (ER)α and β, resulting in tissue dependent estrogen agonist or antagonist responses. Both raloxifene and tamoxifen are most frequently used SERMs and exert estrogen agonistic effects on human bone tissues, but the details of their possible direct effects on human bone cells have remained largely unknown. In our present study, we examined the comparative effects of raloxifene, tamoxifen, and native estrogen, estradiol on human osteoblast cell line, hFOB in vitro. Both the cell numbers and the ratio of the cells in S phase fraction were significantly increased by the treatment of raloxifene or tamoxifen as well as estradiol treatments in hFOB. Gene profile patterns following treatment with raloxifene, tamoxifen, and estradiol demonstrated similar patterns in a microarray/hierarchal clustering analysis. We also examined the expression levels of these genes detected by this analysis using quantitative RT-PCR. MAF gene was induced by raloxifene treatment alone. GAS6 gene was induced by raloxifene and tamoxifen as well as estradiol. An estrogen receptor blocker, ICI 18, 286, inhibited an increase of GAS6 gene expression but not the levels of MAF gene mRNA expression. Results of our present study demonstrated that raloxifene exerted direct protective effects on human osteoblasts in both estrogen receptor dependent and independent manners.  相似文献   

4.
5.
Clinical studies have shown that estrogen replacement therapy (ERT) reduces the incidence and severity of osteoporosis and cardiovascular disease in postmenopausal women. However, long term estrogen treatment also increases the risk of endometrial and breast cancer. The selective estrogen receptor (ER) modulators (SERMs) tamoxifen and raloxifene, cause antagonistic and agonistic responses when bound to the ER. Their predominantly antagonistic actions in the mammary gland form the rationale for their therapeutic utility in estrogen-responsive breast cancer, while their agonistic estrogen-like effects in bone and the cardiovascular system make them candidates for ERT regimens. Of these two SERMs, raloxifene is preferred because it has markedly less uterine-stimulatory activity than either estrogen or tamoxifen. To identify additional SERMs, a method to classify compounds based on differential gene expression modulation was developed. By analysis of 24 different combinations of genes and cells, a selected set of assays that permitted discrimination between estrogen, tamoxifen, raloxifene, and the pure ER antagonist ICI164384 was generated. This assay panel was employed to measure the activity of 38 compounds, and the gene expression fingerprints (GEFs) obtained for each compound were used to classify all compounds into eight groups. The compound's GEF predicted its uterine-stimulatory activity. One group of compounds was evaluated for activity in attenuating bone loss in ovariectomized rats. Most compounds with similar GEFs had similar in vivo activities, thereby suggesting that GEF-based screens could be useful in predicting a compound's in vivo pharmacological profile.  相似文献   

6.
Selective estrogen receptor modulators (SERMs) represent a growing class of compounds that act as either estrogen receptor gonists or ntagonists in tissue-selective manner. SERMs with the appropriate selectivity profile offer the opportunity to dissociate the favorable bone and cardio-vascular effects of estrogen from its unfavorable stimulatory effects on the breast and uterus. The triphenylethylene drug tamoxifen proved to be invaluable to treat and protect against breast cancer and bone loss, probably reduces cardiovascular risk, but had side effects on uterus similar to natural estrogens. The tamoxifen derivate toremifene is also used to treat breast cancer, but has less effect on bone. The non-steroidal benzothiophene derivate, raloxifene, is the best SERM available thus far. It has the potential to prevent breast cancer (like tamoxifen), but has better profile in its actions on bone and cardiovascular system (produces a rapid reduction of serum cholesterol, decreases fibrinogen and lipoprotein, improves the vascular epithelial function, attenuates vascular intimal thickening, etc.). It does not increase the incidence of endometrial cancer. Compounds of this class are the first step in developing the perfect hormone replacement and other multitargeted therapy. This review summarizes the recent important knowledge about SERMs.  相似文献   

7.
8.
Baraka AM  Korish AA  Soliman GA  Kamal H 《Life sciences》2011,88(19-20):879-885
AimThe aim of the present study was to assess and compare the effect of 17β-estradiol and two different selective estrogen receptor modulators (SERMs), tamoxifen and raloxifene, as well as a selective estrogen receptor alpha agonist, propyl-pyrazole-triol (PPT) and a selective estrogen receptor beta agonist, diarylpropionitrile (DPN), on behavioral and biochemical alterations in 6-hydroxydopamine (6-OHDA)-induced nigral dopaminergic cell death in rats.Main methods80 female Wister rats were used. Animals were divided into eight equal groups: Group I; Sham operated, Group II; subjected to ovariectomy (OVX), Group III; OVX rats received striatal injection of 6-OHDA, Groups IV–VIII; OVX rats received striatal injection of 6-OHDA and were injected daily with 17β-estradiol, tamoxifen, raloxifene, PPT and DPN respectively for 5 days before 6-OHDA and continued for further 2 weeks.Key findingsResults showed that striatal injection of 6-OHDA produced significant behavioral alteration suggestive of PD, together with significant decrease in striatal dopamine, homovanillic acid (HVA) and 3,4-dihydroxyphenyl acetic acid (DOPAC) concentrations. 6-OHDA-induced nigral dopaminergic cell death was characterized by oxidative stress, evidenced by significant decrease in striatal glutathione peroxidase activity, as well as apoptosis, evidenced by significant increase in nigral caspase-3 activity. Treatment with 17β-estradiol, raloxifene, PPT, but neither tamoxifen nor DPN, resulted in significant amelioration of the behavioral and biochemical alterations induced by 6-OHDA.SignificanceThese findings suggest that estrogen and some SERMs having estrogenic agonist activity in the brain, like raloxifene, might exert beneficial effect in PD.  相似文献   

9.
Neuroprotective effects of estradiol are well characterized in animal experimental models. However, in humans, the outcome of estrogen treatment for cognitive function and neurological diseases is very controversial. Selective estrogen receptor modulators (SERMs) may represent an alternative to estrogen for the treatment or the prevention of neurodegenerative disorders. SERMs interact with the estrogen receptors and have tissue-specific effects distinct from those of estradiol, acting as estrogen agonists in some tissues and as antagonists in others. In this study we have assessed the effect of tamoxifen, raloxifene, lasofoxifene (CP-336,156), bazedoxifene (TSE-424), and 17beta-estradiol on the hippocampus of adult ovariectomized rats, after the administration of the excitotoxin kainic acid. Administration of kainic acid induced the expression of vimentin in reactive astroglia and a significant neuronal loss in the hilus. SERMs did not affect vimentin immunoreactivity in the hilus, while 17beta-estradiol significantly reduced the surface density of vimentin immunoreactive profiles. Estradiol, tamoxifen (0.4-2 mg/kg), raloxifene (0.4-2 mg/kg), and bazedoxifene (2 mg/kg) prevented neuronal loss in the hilus after the administration of kainic acid. Lasofoxifene (0.4-2 mg/kg) was not neuroprotective. These findings indicate that SERMs present different dose-dependent neuroprotective effects. Furthermore, the mechanisms of neuroprotection by SERMs and estradiol are not identical, because SERMs do not significantly affect reactive gliosis while neuroprotection by estradiol is associated with a strong down-regulation of reactive astroglia.  相似文献   

10.

Background  

Selective estrogen receptor modulators (SERMs) have been developed in order to create means to control estrogenic effects on different tissues. A major drawback in treatment of estrogen receptor (ER) positive breast cancer with the antagonist tamoxifen (TAM) is its agonistic effect in the endometrium. Raloxifene (RAL) is the next generation of SERMs where the agonistic effect on the endometrium has been reduced.  相似文献   

11.
Starting from a phenol screening hit (6), three series of benzopyranone selective estrogen receptor modulators (SERMs) have been designed, synthesized, and analyzed for both estrogen receptor alpha binding affinity and in vitro activity in two cell assays. The lead compound identified, SP500263 (13), was more potent than raloxifene and tamoxifen in a cell-based assay measuring inhibition of interleukin-6 release.  相似文献   

12.
13.
Although controversy remains regarding direct effects of estrogen on bone, in vivo data clearly show that estrogens suppress bone turnover, resulting in decreased bone resorption and formation activity. Selective estrogen receptor modulators (SERMs), such as raloxifene, produce effects on bone which are very similar to those of estrogen. In vitro, both raloxifene and estrogen inhibit mammalian osteoclast differentiation and bone resorption activity, but only in the presence of IL-6. Data from a number of ovariectomized rat model manipulations (i.e. hypophysectomy, low calcium diet and drug combinations) demonstrate a strong parallel between the antiosteopenic effects of raloxifene and estrogen. A characteristic action of estrogens on the skeleton is inhibition of longitudinal bone growth, an effect which is not observed with other resorption inhibitors, including calcitonin and bisphosphonates. Consistent with an estrogen-like mechanism on bone, raloxifene inhibits longitudinal bone growth in growing rats. In addition to the overall similarity of the bone activity profile in animals, estrogen and raloxifene also produce similar effects on various signaling pathways relative to the antiosteopenic effect of these two agents. For example, IL-6, a cytokine involved in high turnover bone resorption following estrogen deficiency in rats, is suppressed by both raloxifene and estrogen. Raloxifene and estrogen also produce a similar activation of TGF-β3 (a cytokine associated with inhibition of osteoclast differentiation and activity) in ovariectomized rats. Like 17β-estradiol, raloxifene binds with high affinity to both estrogen receptor- (ER) and estrogen receptor-β (ERβ). Crystal structure analyses have shown that 17β-estradiol and raloxifene bind to ER with small, but important, differences in three dimensional structure. These subtle differences in the conformation of the ligand:receptor complex are likely the basis for the key pharmacological differences between estrogens and the various SERMs (i.e. raloxifene vs tamoxifen). Raloxifene also produces estrogen-like effects on serum cholesterol metabolism and the vasculature. Thus, while raloxifene exhibits a complete estrogen antagonist in mammary tissue and the uterus, it produces beneficial effects on the cardiovascular system and prevents bone loss via an estrogen receptor mediated mechanism.  相似文献   

14.
15.
To investigate the differential short-term effects of selective estrogen receptor (ER) modulators (SERMs) on uterus, we treated adult ovariectomized rats with a novel SERM, ospemifene (Osp), two previously established SERMs (tamoxifen and raloxifene (Ral)) and estradiol. The expression of two estrogen-regulated early response genes c-fos and vascular endothelial growth factor (VEGF), and DNA synthesis were analysed at 1-24 h after treatment of ovariectomized rats. Induction of c-fos mRNA by each of the SERMs showed a biphasic pattern with peaks at 3 and 20 h, respectively. The maximum level of VEGF mRNA was observed at 1 h after raloxifene and 6 h after tamoxifen or ospemifene treatment. Maximum levels of the c-fos and VEGF mRNA after raloxifene treatment were higher than those seen after treatments with E2 or a corresponding dose of tamoxifen or ospemifene. DNA synthesis was significantly increased by ospemifene, tamoxifen and raloxifene both in luminal and glandular epithelium. The stimulation was transient, peaking at 16 h. In comparison, the maximum level observed at 16 h after E2 treatment sustained at least until 24 h. DNA synthesis in stromal cells was increased by the SERMs but not by E2 at 24 h. When treated together with E2, the SERMs were able to antagonise E2-stimulated DNA synthesis at 16 h. Our results demonstrate that the initial response of uterus to ospemifene, raloxifene and tamoxifen includes activation of early response genes and even transient stimulation of DNA synthesis in spite of their different long-term effects. However, the early stimulatory events may be mediated by different mechanisms leading to diverging pathways in various tissue compartments and development of differential SERM-specific long-term responses of uterus.  相似文献   

16.
Selective estrogen receptor modulators (SERMs) show differential effects upon ERalpha activation function 1 (AF-1). Tamoxifen allows strong ERalpha AF-1 activity, whereas raloxifene allows less and ICI 182,780 (ICI) allows none. Here, we show that blockade of corepressor histone de-acetylase (HDAC) activity reverses the differential inhibitory effect of SERMs upon AF-1 activity in MCF-7 cells. This suggests that differential SERM repression of AF-1 involves HDAC-dependent corepressors. Consistent with this, ICI and raloxifene are more potent than tamoxifen in promoting ERalpha-dependent sequestration of progesterone receptor-associated corepressors. Moreover, ICI and raloxifene are more efficient than tamoxifen in promoting ERalpha binding to the corepressor N-CoR in vivo and in vitro. An ERalpha mutation (537X) that increases N-CoR binding in the presence of all SERMs blocks AF-1 activity. An ERalpha mutation (L379R) that decreases N-CoR binding increases AF-1 activity in the presence of ICI and raloxifene and reverses the effect of the 537X mutation. The 537X and L379R mutations also alter the ligand preference of ERalpha action at AP-1 sites and C3 complement, an action that also involves AF-1. Together, our results suggest that differential SERM effects on corepressor binding can explain differences in SERM effects on ERalpha activity. We propose a model for differential effects of SERMs on N-CoR binding.  相似文献   

17.
Raloxifene and idoxifene areselective estrogen receptor modulators (SERMs) that exhibittissue-specific agonist or antagonist properties via interactions withthe estrogen receptor (ER). Both compounds are similarlyosteoprotective in the ovariectomized rat in vivo as assessed bymeasurement of bone mineral density, urinary pyridinium cross-links,and serum osteocalcin, suggesting a similar mechanism of action.However, we have identified a fundamental difference in this mechanismvia the estrogen response element (ERE) in osteoblast-like cells. Withthe use of ERE-luciferase reporter constructs, raloxifene, like thecomplete ER-antagonist ICI-182780, acts as an antagonist viathe ERE in osteoblastic cells. In contrast, idoxifene, like17-estrogen itself and 4-OH-tamoxifen, acts as an agonist inosteoblastic cells via an ER/ERE-mediated mechanism. Both ICI-182780and raloxifene inhibited the ERE-dependent agonist activity of17-estradiol and idoxifene in osteoblastic cells. In contrast, inbreast cells, raloxifene, idoxifene, 4-OH-tamoxifen, and ICI-182780 hadno agonist activity and, indeed, raloxifene and idoxifene were potentantagonists of ERE-mediated 17-estradiol action, indicating anERE-dependent mode of action in these cells. Although these SERMsexhibit a similar antagonist activity profile in breast cells, they canbe distinguished mechanistically in osteoblastic cells.

  相似文献   

18.
In 1936, Professor Antoine Lacassagne suggested that breast cancer could be prevented by developing drugs to block estrogen action in the breast. Jensen discovered the physiologic target, the estrogen receptor, that regulates estrogen action in its target tissues and Lerner discovered the first nonsteroidal antiestrogen MER25. However, the success of tamoxifen as a treatment of breast cancer opened the door for the testing of the worth of tamoxifen to reduce breast cancer incidence in high-risk women. In 1998, Fisher showed that tamoxifen could reduce breast cancer incidence by 50%. Nevertheless, only half the women who develop breast cancer have risk factors other than age, so what can be done for women without risk factors? The recognition that nonsteroidal antiestrogens have the ability to modulate estrogen action selectively has advanced the design and development of new drug for multiple diseases. Tamoxifen and raloxifene maintain bone density and raloxifene is now used to prevent osteoporosis and is being tested as a preventive for coronary heart disease and breast cancer. The drug group is now known as selective estrogen receptor modulators (SERMs) and the challenge is to design new agents for multiple applications. If the 20th century was the era of chemotherapy, the 21st century will be the era of chemoprevention.  相似文献   

19.
20.
Anti-bone resorptive drugs such as bisphosphonates, the anti-RANKL antibody (denosumab), or selective estrogen receptor modulators (SERMs) have been developed to treat osteoporosis. Mechanisms underlying activity of bisphosphonates or denosumab in this context are understood, while it is less clear how SERMs like tamoxifen, raloxifene, or bazedoxifene inhibit bone resorption. Recently, accumulation of hypoxia inducible factor 1 alpha (Hif1α) in osteoclasts was shown to be suppressed by estrogen in normal cells. In addition, osteoclast activation and decreased bone mass seen in estrogen-deficient conditions was found to require Hif1α. Here, we used western blot analysis of cultured osteoclast precursor cells to show that tamoxifen, raloxifene, or bazedoxifene all suppress Hif1α protein accumulation. The effects of each SERM on osteoclast differentiation differed in vitro. Our results suggest that interventions such as the SERMs evaluated here could be useful to inhibit Hif1α and osteoclast activity under estrogen-deficient conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号