首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bronchial hyperresponsiveness and eosinophilia are major characteristics of asthma. Calcitonin gene-related peptide (CGRP) is a neuropeptide that has various biological actions. In the present study, we questioned whether CGRP might have pathophysiological roles in airway hyperresponsiveness and eosinophilia in asthma. To determine the exact roles of endogenous CGRP in vivo, we chose to study antigen-induced airway responses using CGRP gene-disrupted mice. After ovalbumin sensitization and antigen challenge, we assessed airway responsiveness and measured proinflammatory mediators. In the sensitized CGRP gene-disrupted mice, antigen-induced bronchial hyperresponsiveness was significantly attenuated compared with the sensitized wild-type mice. Antigen challenge induced eosinophil infiltration in bronchoalveolar lavage fluid, whereas no differences were observed between the wild-type and CGRP-mutant mice. Antigen-induced increases in cysteinyl leukotriene production in the lung were significantly reduced in the CGRP-disrupted mice. These findings suggest that CGRP could be involved in the antigen-induced airway hyperresponsiveness, but not eosinophil infiltration, in mice. The CGRP-mutant mice may provide appropriate models to study molecular mechanisms underlying CGRP-related diseases.  相似文献   

2.
CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation.  相似文献   

3.

Background

Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in previously sensitized and challenged mice.

Methods

BALB/c mice were sensitized and challenged (primary) with ovalbumin (OVA). Six weeks later, a single OVA aerosol (secondary challenge) was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge.

Results

Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN) T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice.

Conclusion

These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the neutrophil elastase inhibitor reduced AHR to inhaled methacholine indicating the potential for its use as a modulator of the immune/inflammatory response in both the neutrophil- and eosinophil-dominant phases of the response to secondary allergen challenge.  相似文献   

4.
Mice with genetic deletion of the cholesterol transporter ATP binding cassette G1 (ABCG1) have pulmonary lipidosis and enhanced innate immune responses in the airway. Whether ABCG1 regulates adaptive immune responses to the environment is unknown. To this end, Abcg1(+/+) and Abcg1(-/-) mice were sensitized to OVA via the airway using low-dose LPS as an adjuvant, and then challenged with OVA aerosol. Naive Abcg1(-/-) mice displayed increased B cells, CD4(+) T cells, CD8(+) T cells, and dendritic cells (DCs) in lung and lung-draining mediastinal lymph nodes, with lung CD11b(+) DCs displaying increased CD80 and CD86. Upon allergen sensitization and challenge, the Abcg1(-/-) airway, compared with Abcg1(+/+), displayed reduced Th2 responses (IL-4, IL-5, eosinophils), increased neutrophils and IL-17, but equivalent airway hyperresponsiveness. Reduced Th2 responses were also found using standard i.p. OVA sensitization with aluminum hydroxide adjuvant. Mediastinal lymph nodes from airway-sensitized Abcg1(-/-) mice produced reduced IL-5 upon ex vivo OVA challenge. Abcg1(-/-) CD4(+) T cells displayed normal ex vivo differentiation, whereas Abcg1(-/-) DCs were found paradoxically to promote Th2 polarization. Th17 cells, IL-17(+) γδT cells, and IL-17(+) neutrophils were all increased in Abcg1(-/-) lungs, suggesting Th17 and non-Th17 sources of IL-17 excess. Neutralization of IL-17 prior to challenge normalized eosinophils and reduced neutrophilia in the Abcg1(-/-) airway. We conclude that Abcg1(-/-) mice display IL-17-mediated suppression of eosinophilia and enhancement of neutrophilia in the airway following allergen sensitization and challenge. These findings identify ABCG1 as a novel integrator of cholesterol homeostasis and adaptive immune programs.  相似文献   

5.
Studies in both humans and rodents have suggested that CD8+ T cells contribute to the development of airway hyperresponsiveness (AHR) and that leukotriene B4 (LTB4) is involved in the chemotaxis of effector CD8+ T cells (T(EFF)) to the lung by virtue of their expression of BLT1, the receptor for LTB4. In the present study, we used a mast cell-CD8-dependent model of AHR to further define the role of BLT1 in CD8+ T cell-mediated AHR. C57BL/6+/+ and CD8-deficient (CD8-/-) mice were passively sensitized with anti-OVA IgE and exposed to OVA via the airways. Following passive sensitization and allergen exposure, C57BL/6+/+ mice developed altered airway function, whereas passively sensitized and allergen-exposed CD8-/- mice failed to do so. CD8-/- mice reconstituted with CD8+ T(EFF) developed AHR in response to challenge. In contrast, CD8-/- mice reconstituted with BLT1-deficient effector CD8+ T cells did not develop AHR. The induction of increased airway responsiveness following transfer of CD8+ T(EFF) or in wild-type mice could be blocked by administration of an LTB4 receptor antagonist confirming the role of BLT1 in CD8+ T cell-mediated AHR. Together, these data define the important role for mast cells and the LTB4-BLT1 pathway in the development of CD8+ T cell-mediated allergic responses in the lung.  相似文献   

6.
The effect of ovalbumin (Ova) sensitization on pulmonary C-fiber sensitivity was investigated. Brown-Norway rats were sensitized by intraperitoneal injection of Ova followed by aerosolized Ova three times per week for 3 wk. Control rats received the vehicle. At the end of the third week, single-unit fiber activities (FA) of pulmonary C fibers were recorded in anesthetized, artificially ventilated rats. Our results showed the following: 1) Ova sensitization induced airway inflammation (infiltration of eosinophils and neutrophils) and airway hyperresponsiveness in rats; 2) baseline FA in sensitized rats was significantly higher than that in control ones; 3) similarly, the pulmonary C-fiber response to right atrial injection of capsaicin was markedly higher in sensitized rats, which were significantly amplified after the acute Ova inhalation challenge; and 4) similar patterns, but smaller magnitudes of the differences in C-fiber responses to adenosine and lung inflation, were also found between sensitized and control rats. In conclusion, Ova sensitization elevated the baseline FA and excitability of pulmonary C fibers, and the hypersensitivity was further potentiated after the acute Ova inhalation challenge in sensitized rats. Chronic allergic inflammatory reactions in the airway probably contributed to the sensitizing effect on these lung afferents.  相似文献   

7.
The mechanisms leading to asthma, and those guarding against it, are yet to be fully defined. The neuropeptide VIP is a cotransmitter, together with nitric oxide (NO), of airway relaxation, and a modulator of immune and inflammatory responses. NO-storing molecules in the lung were recently shown to modulate airway reactivity and were proposed to have a protective role against the disease. We report here that mice with targeted deletion of the VIP gene spontaneously exhibit airway hyperresponsiveness to the cholinergic agonist methacholine as well as peribronchiolar and perivascular cellular infiltrates and increased levels of inflammatory cytokines in bronchoalveolar lavage fluid. Immunologic sensitization and challenge with ovalbumin generally enhanced the airway hyperresponsiveness and airway inflammation in all mice. Intraperitoneal administration of VIP over a 2-wk period in knockout mice virtually eliminated the airway hyperresponsiveness and reduced the airway inflammation in previously sensitized and challenged mice. The findings suggest that 1) VIP may be an important component of endogenous anti-asthma mechanisms, 2) deficiency of the VIP gene may predispose to asthma pathogenesis, and 3) treatment with VIP or a suitable agonist may offer potentially effective replacement therapy for this disease.  相似文献   

8.
Allergic airway inflammation and hyperreactivity are modulated by gammadelta T cells, but different experimental parameters can influence the effects observed. For example, in sensitized C57BL/6 and BALB/c mice, transient depletion of all TCR-delta(+) cells just before airway challenge resulted in airway hyperresponsiveness (AHR), but caused hyporesponsiveness when initiated before i.p. sensitization. Vgamma4(+) gammadelta T cells strongly suppressed AHR; their depletion relieved suppression when initiated before challenge, but not before sensitization, and they suppressed AHR when transferred before challenge into sensitized TCR-Vgamma4(-/-)/6(-/-) mice. In contrast, Vgamma1(+) gammadelta T cells enhanced AHR and airway inflammation. In normal mice (C57BL/6 and BALB/c), enhancement of AHR was abrogated only when these cells were depleted before sensitization, but not before challenge, and with regard to airway inflammation, this effect was limited to C57BL/6 mice. However, Vgamma1(+) gammadelta T cells enhanced AHR when transferred before challenge into sensitized B6.TCR-delta(-/-) mice. In this study Vgamma1(+) cells also increased levels of Th2 cytokines in the airways and, to a lesser extent, lung eosinophil numbers. Thus, Vgamma4(+) cells suppress AHR, and Vgamma1(+) cells enhance AHR and airway inflammation under defined experimental conditions. These findings show how gammadelta T cells can be both inhibitors and enhancers of AHR and airway inflammation, and they provide further support for the hypothesis that TCR expression and function cosegregate in gammadelta T cells.  相似文献   

9.
Within the airways, endothelin-1 (ET-1) can exert a range of prominent effects, including airway smooth muscle contraction, bronchial obstruction, airway wall edema, and airway remodeling. ET-1 also possesses proinflammatory properties and contributes to the late-phase response in allergic airways. However, there is no direct evidence for the contribution of endogenous ET-1 to airway hyperresponsiveness in allergic airways. Allergic inflammation induced in mice by sensitization and challenge with the house dust mite allergen Der P1 was associated with elevated levels of ET-1 within the lung, increased numbers of eosinophils within bronchoalveolar lavage fluid and tissue sections, and development of airway hyperresponsiveness to methacholine (P < 0.05, n = 6 mice per group). Treatment of allergic mice with an endothelin receptor antagonist, SB-217242 (30 mg x kg(-1) x day(-1)), during allergen challenge markedly inhibited airway eosinophilia (bronchoalveolar lavage fluid and tissue) and development of airway hyperresponsiveness. These findings provide direct evidence for a mediator role for ET-1 in development of airway hyperresponsiveness and airway eosinophilia in Der P1-sensitized mice after antigen challenge.  相似文献   

10.
IL-10-differentiated dendritic cells (DC10s) can prevent allergen sensitization and reverse the asthma phenotype in mice with established disease. However, little is known about the time-frames over which this tolerance is effective. We report that at 2 wk after i.p. or transtracheal delivery of 1 × 10(6) OVA-, but not house dust mite- presenting, DC10s to OVA-asthmatic mice, significant diminution of airway hyperresponsiveness (AHR) was first apparent, whereas AHR was abrogated between 3 and 10 wk posttreatment. At 13 wk, AHR returned to pretreatment levels but could again be reversed by DC10 retreatment. The impact of a single DC10 treatment on airway eosinophil and Th2 cytokine responses to recall OVA challenge, and on OVA-specific IgE/IgG1 responses, was substantial at 3 wk posttreatment, but progressively increased thereafter, such that at 8 mo, airway eosinophil and Th2 responses to recall allergen challenge remained ~85-95% suppressed relative to saline-treated asthmatic mice. Four biweekly DC10 treatments, whether transtracheal or i.p., reduced all asthma parameters to near background by 8 wk, whereas s.c. DC10 treatments did not affect AHR but did reduce the airway Th2 responses (i.v. DC10 had no discernible effects). Repeated challenge of the DC10-treated mice with aerosolized OVA (100 μg/ml) did not reverse tolerance, but treatment with the indoleamine-2,3-dioxygenase antagonist 1-methyltryptophan or neutralizing anti-IL-10R from days 12 to 21 after DC10 therapy partially reversed tolerance (Th2 cytokine responses, but not AHR). These findings indicate that DC10-induced Th2 tolerance in asthmatic animals is long lived, but that DC10s employ distinct mechanisms to affect AHR versus Th2 immunoinflammatory parameters.  相似文献   

11.

Background

Allergic asthma is on the rise in developed countries. A common characteristic of allergens is that they contain intrinsic protease activity, and many have been shown to activate protease-activated receptor (PAR)-2 in vitro. The role for PAR-2 in mediating allergic airway inflammation has not been assessed using a real world allergen.

Methods

Mice (wild type or PAR-2-deficient) were sensitized to German cockroach (GC) feces (frass) or protease-depleted GC frass by either mucosal exposure or intraperitoneal injection and measurements of airway inflammation (IL-5, IL-13, IL-17A, and IFNγ levels in the lung, serum IgE levels, cellular infiltration, mucin production) and airway hyperresponsiveness were performed.

Results

Following systemic sensitization, GC frass increased airway hyperresponsiveness, Th2 cytokine release, serum IgE levels, cellular infiltration and mucin production in wild type mice. Interestingly, PAR-2-deficient mice had similar responses as wild type mice. Since these data were in direct contrast to our finding that mucosal sensitization with GC frass proteases regulated airway hyperresponsiveness and mucin production in BALB/c mice (Page et. al. 2007 Resp Res 8:91), we backcrossed the PAR-2-deficient mice into the BALB/c strain. Sensitization to GC frass could now occur via the more physiologically relevant method of intratracheal inhalation. PAR-2-deficient mice had significantly reduced airway hyperresponsiveness, Th2 and Th17 cytokine release, serum IgE levels, and cellular infiltration compared to wild type mice when sensitization to GC frass occurred through the mucosa. To confirm the importance of mucosal exposure, mice were systemically sensitized to GC frass or protease-depleted GC frass via intraperitoneal injection. We found that removal of proteases from GC frass had no effect on airway inflammation when administered systemically.

Conclusions

We showed for the first time that allergen-derived proteases in GC frass elicit allergic airway inflammation via PAR-2, but only when allergen was administered through the mucosa. Importantly, our data suggest the importance of resident airway cells in the initiation of allergic airway disease, and could make allergen-derived proteases attractive therapeutic targets.  相似文献   

12.
The morbidity and mortality from asthma in the Western world have increased 75% in the past 20 years. Recent studies have demonstrated that sensitization to cockroach allergens correlates strongly with the increased asthma morbidity for adults and children. We investigated whether dexamethasone administered before or after allergen challenge would inhibit the pulmonary inflammation and airway hyperresponsiveness in a mouse model of asthma induced by a house dust extract with high levels of cockroach allergens. For the prevention experiment, mice were treated with an intraperitoneal injection of dexamethasone 1 h before each pulmonary challenge, and airway hyperresponsiveness was measured 24 h after the last challenge. Mice were killed 48 h after the last challenge. For the reversal study, airway hyperresponsiveness was measured 24 h after the last challenge, and the mice were treated with dexamethasone. Dexamethasone treatment before allergen challenge significantly reduced the pulmonary recruitment of inflammatory cells, myeloperoxidase activity in the lung, airway hyperreactivity, and total serum IgE levels compared with PBS-treated mice. Additionally, dexamethasone treatment could significantly reduce the airway hyperreactivity of an established asthmatic response. These results demonstrate that dexamethasone not only prevents but also halts the asthmatic response induced by house dust containing cockroach allergens. This model exhibits several features of human asthma that may be exploited in the study of pathophysiological mechanisms and potential therapeutic interventions.  相似文献   

13.
T-cell-mediated airway inflammation is considered to be critical in the pathogenesis of airway hyperresponsiveness (AHR). We have described a mouse model in which chronic allergen exposure results in sustained AHR and aspects of airway remodeling and here sought to determine whether eliminating CD4(+) and CD8(+) cells, at a time when airway remodeling had occurred, would attenuate this sustained AHR. Sensitized BALB/c mice were subjected to either brief or chronic periods of allergen exposure and studied 24 h after brief or 4 wk after chronic allergen exposure. In both models, mice received three treatments with anti-CD4 and -CD8 monoclonal antibodies during the 10 days before outcome measurements. Outcomes included in vivo airway responsiveness to intravenous methacholine, CD4(+) and CD8(+) cell counts of lung and spleen using flow cytometric analysis, and airway morphometry using a computer-based image analysis system. Compared with saline control mice, brief allergen challenge resulted in AHR, which was eliminated by antibody treatment. Chronic allergen challenge resulted in sustained AHR and indexes of airway remodeling. This sustained AHR was not reversed by antibody treatment, even though CD4(+) and CD8(+) cells were absent in lung and spleen. These results indicate that T-cell-mediated inflammation is critical for development of AHR associated with brief allergen exposure, but is not necessary to maintain sustained AHR.  相似文献   

14.
15.
The class A scavenger receptors (SR-A) MARCO and SR-AI/II are expressed on lung macrophages (MPhis) and dendritic cells (DCs) and function in innate defenses against inhaled pathogens and particles. Increased expression of SR-As in the lungs of mice in an OVA-asthma model suggested an additional role in modulating responses to an inhaled allergen. After OVA sensitization and aerosol challenge, SR-AI/II and MARCO-deficient mice exhibited greater eosinophilic airway inflammation and airway hyperresponsiveness compared with wild-type mice. A role for simple SR-A-mediated Ag clearance ("scavenging") by lung MPhis was excluded by the observation of a comparable uptake of fluorescent OVA by wild-type and SR-A-deficient lung MPhis and DCs. In contrast, airway instillation of fluorescent Ag revealed a significantly higher traffic of labeled DCs to thoracic lymph nodes in SR-A-deficient mice than in controls. The increased migration of SR-A-deficient DCs was accompanied by the enhanced proliferation in thoracic lymph nodes of adoptively transferred OVA-specific T cells after airway OVA challenge. The data identify a novel role for SR-As expressed on lung DCs in the down-regulation of specific immune responses to aeroallergens by the reduction of DC migration from the site of Ag uptake to the draining lymph nodes.  相似文献   

16.
Respiratory allergies represent a failure to generate nonpathogenic responses to innocuous foreign materials. Herein we assessed the role of the sensitizing dose of allergen in this response/nonresponse paradigm, sensitizing BALB/c mice with 5 ng-2 microg of OVA-alum and assessing their responses to repeated OVA aerosol challenge. Mice sensitized with < or = 25 ng of OVA-alum did not develop atopic antibodies, airway hyperresponsiveness (AHR), eosinophilia, or pulmonary Th2 responses, but the 25-ng group animals did develop significant IgA responses. The mice sensitized with 100 ng of OVA-alum developed AHR in the absence of detectable allergic disease, while the mice sensitized with 250 ng-2 microg of OVA/alum developed full-spectrum allergic disease (i.e., eosinophilia, IgE, IgG1, pulmonary Th2 cytokine responses, and AHR). These data indicate that limiting doses of allergen can differentially induce IgA or AHR in the absence of atopic disease in mice.  相似文献   

17.
Experimental evidence and epidemiological studies indicate that exposure to endotoxin lipopolysaccharide (eLPS) or other TLR agonists prevent asthma. We have previously shown in the OVA-model of asthma that eLPS administration during alum-based allergen sensitization blocked the development of lung TH2 immune responses via MyD88 pathway and IL-12/IFN-γ axis. In the present work we determined the effect of eLPS exposure during sensitization to a natural airborne allergen extract derived from the house dust mite Blomia tropicalis (Bt). Mice were subcutaneously sensitized with Bt allergens co-adsorbed onto alum with or without eLPS and challenged twice intranasally with Bt. Cellular and molecular parameters of allergic lung inflammation were evaluated 24 h after the last Bt challenge. Exposure to eLPS but not to ultrapure LPS (upLPS) preparation during sensitization to Bt allergens decreased the influx of eosinophils and increased the influx of neutrophils to the airways. Inhibition of airway eosinophilia was not observed in IFN-γdeficient mice while airway neutrophilia was not observed in IL-17RA-deficient mice as well in mice lacking MyD88, CD14, TLR4 and, surprisingly, TLR2 molecules. Notably, exposure to a synthetic TLR2 agonist (PamCSK4) also induced airway neutrophilia that was dependent on TLR2 and TLR4 molecules. In the OVA model, exposure to eLPS or PamCSK4 suppressed OVA-induced airway inflammation. Our results suggest that B. tropicalis allergens engage TLR4 that potentiates TLR2 signaling. This dual TLR activation during sensitization results in airway neutrophilic inflammation associated with increased frequency of lung TH17 cells. Our work highlight the complex interplay between bacterial products, house dust mite allergens and TLR signaling in the induction of different phenotypes of airway inflammation.  相似文献   

18.
The effect of O3 exposure (3 ppm, 1 h) on the in vivo and in vitro airway responsiveness, as well as the changes in cell contents in bronchoalveolar lavage (BAL) fluid, were evaluated 16-18 h after O3 exposure in sensitized and nonsensitized male guinea pigs. The sensitization procedure was performed through repeated inhalation of ovalbumin for 3 wk. Increase in pulmonary insufflation pressure produced by the excitatory nonadrenergic noncholinergic (eNANC) system, histamine, and antigen were assessed in in vivo conditions, whereas airway responsiveness to histamine and substance P was evaluated in in vitro conditions by use of tracheal chains with or without epithelium and lung parenchymal strips. We found that O3 exposure 1) increased the neutrophil content in BAL fluids in both sensitized and nonsensitized guinea pigs, 2) caused hyperresponsiveness to eNANC stimulation in nonsensitized guinea pigs (although combination of sensitization and O3 exposure paradoxically abolished the hyperresponsiveness to eNANC stimulation), 3) increased the in vivo bronchoconstrictor responses to histamine and antigen, 4) caused hyperresponsiveness to substance P in nonsensitized tracheae with or without epithelium and in sensitized tracheae with epithelium, 5) did not modify the responsiveness to histamine in tracheae with or without epithelium (and in addition, epithelium removal caused hyperresponsiveness to histamine even in those tracheae exposed to O3), and 6) produced hyperresponsiveness to histamine in lung parenchymal strips either from sensitized or nonsensitized guinea pigs.  相似文献   

19.
Recent studies in both human and rodents have indicated that in addition to CD4+ T cells, CD8+ T cells play an important role in allergic inflammation. We previously demonstrated that allergen-sensitized and -challenged CD8-deficient (CD8-/-) mice develop significantly lower airway hyperresponsiveness (AHR), eosinophilic inflammation, and IL-13 levels in bronchoalveolar lavage fluid compared with wild-type mice, and that all these responses were restored by adoptive transfer of in vivo-primed CD8+ T cells or in vitro-generated effector CD8+ T cells (T(EFF)). Recently, leukotriene B4 and its high affinity receptor, BLT1, have been shown to mediate in vitro-generated T(EFF) recruitment into inflamed tissues. In this study we investigated whether BLT1 is essential for the development of CD8+ T cell-mediated allergic AHR and inflammation. Adoptive transfer of in vivo-primed BLT1+/+, but not BLT1-/-, CD8+ T cells into sensitized and challenged CD8-/- mice restored AHR, eosinophilic inflammation, and IL-13 levels. Moreover, when adoptively transferred into sensitized CD8-/- mice, in vitro-generated BLT1+/+, but not BLT1-/-, T(EFF) accumulated in the lung and mediated these altered airway responses to allergen challenge. These data are the first to show both a functional and an essential role for BLT1 in allergen-mediated CD8+ T(EFF) recruitment into the lung and development of AHR and airway inflammation.  相似文献   

20.
Peripheral tolerance to allergens is mediated in large part by the naturally occurring lung CD4(+)CD25(+) T cells, but their effects on allergen-induced airway responsiveness have not been well defined. Intratracheal, but not i.v., administration of naive lung CD4(+)CD25(+) T cells before allergen challenge of sensitized mice, similar to the administration of the combination of rIL-10 and rTGF-beta, resulted in reduced airway hyperresponsiveness (AHR) and inflammation, lower levels of Th2 cytokines, higher levels of IL-10 and TGF-beta, and less severe lung histopathology. Significantly, CD4(+)CD25(+) T cells isolated from IL-10(-/-) mice had no effect on AHR and inflammation, but when incubated with rIL-10 before transfer, suppressed AHR, and inflammation, and was associated with elevated levels of bronchoalveolar lavage TGF-beta levels. By analogy, anti-TGF-beta treatment reduced regulatory T cell activity. These data identify naturally occurring lung CD4(+)CD25(+) T cells as capable of regulating lung allergic responses in an IL-10- and TGF-beta-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号