首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tails of histone proteins are central players for all chromatin-mediated processes. Whereas the N-terminal histone tails have been studied extensively, little is known about the function of the H2A C-terminus. Here, we show that the H2A C-terminal tail plays a pivotal role in regulating chromatin structure and dynamics. We find that cells expressing C-terminally truncated H2A show increased stress sensitivity. Moreover, both the complete and the partial deletion of the tail result in increased histone exchange kinetics and nucleosome mobility in vivo and in vitro. Importantly, our experiments reveal that the H2A C-terminus is required for efficient nucleosome translocation by ISWI-type chromatin remodelers and acts as a novel recognition module for linker histone H1. Thus, we suggest that the H2A C-terminal tail has a bipartite function: stabilisation of the nucleosomal core particle, as well as mediation of the protein interactions that control chromatin dynamics and conformation.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Dot1 is a non-SET domain protein that methylates histone H3 at lysine 79, a surface-exposed residue that lies within the globular domain. In the context of a nucleosome, H3 lysine 79 is located in close proximity with lysine 123 of histone H2B, a major site for ubiquitination by Rad6. Here we show that Rad6-mediated ubiquitination of H2B lysine 123 is important for efficient methylation of lysine 79, but not lysine 36, of histone H3. In contrast, lysine 79 methylation of H3 is not required for ubiquitination of H2B. Our study provides a new example of trans-histone regulation between modifications on different histones. In addition, it suggests that Rad6 affects telomeric silencing, at least in part, by influencing methylation of histone H3.  相似文献   

10.
We have studied the role of individual histone N-termini and the phosphorylation of histone H3 in chromosome condensation. Nucleosomes, reconstituted with histone octamers containing different combinations of recombinant full-length and tailless histones, were used as competitors for chromosome assembly in Xenopus egg extracts. Nucleosomes reconstituted with intact octamers inhibited chromosome condensation as efficiently as the native ones, while tailless nucleosomes were unable to affect this process. Importantly, the addition to the extract of particles containing only intact histone H2B strongly interfered with chromosome formation while such an effect was not observed with particles lacking the N-terminal tail of H2B. This demonstrates that the inhibition effect observed in the presence of competitor nucleosomes is mainly due to the N-terminus of this histone, which, therefore, is essential for chromosome condensation. Nucleosomes in which all histones but H3 were tailless did not impede chromosome formation. In addition, when competitor nucleosome particles were reconstituted with full-length H2A, H2B and H4 and histone H3 mutated at the phosphorylable serine 10 or serine 28, their inhibiting efficiency was identical to that of the native particles. Hence, the tail of H3, whether intact or phosphorylated, is not important for chromosome condensation. A novel hypothesis, termed 'the ready production label' was suggested to explain the role of histone H3 phosphorylation during cell division.  相似文献   

11.
12.
13.
The yeast Set1-complex catalyzes histone H3 lysine 4 (H3K4) methylation. Using N-terminal Edman sequencing, we determined that 50% of H3K4 is methylated and consists of roughly equal amounts of mono, di and tri-methylated H3K4. We further show that loss of either Paf1 of the Paf1 elongation complex, or ubiquitination of histone H2B, has only a modest effect on bulk histone mono-methylation at H3K4. Despite the fact that Set1 recruitment decreases in paf1delta cells, loss of Paf1 results in an increase of H3K4 mono-methylation at the 5' coding region of active genes, suggesting a Paf1-independent targeting of Set1. In contrast to Paf1 inactivation, deleting RTF1 affects H3K4 mono-methylation at the 3' coding region of active genes and results in a decrease of global H3K4 mono-methylation. Our results indicate that the requirements for mono-methylation are distinct from those for H3K4 di and tri-methylation, and point to differences among members of the Paf1 complex in the regulation of H3K4 methylation.  相似文献   

14.
15.
Chromatin alterations, induced by covalent histone modifications, mediate a wide range of DNA-templated processes, including apoptosis. Apoptotic chromatin condensation has been causally linked to the phosphorylation of histone H2B (serine 14 in human; serine 10 in yeast, H2BS10ph) in human and yeast cells. Here, we extend these studies by demonstrating a unidirectional, crosstalk pathway between H2BS10 phosphorylation and lysine 11 acetylation (H2BK11ac) in yeast. We demonstrate that the H2BK11 acetyl mark, which exists in growing yeast, is removed upon H(2)O(2) treatment but before H2BS10ph occurs, in a unidirectional fashion. H2B K11Q mutants are resistant to cell death elicited by H(2)O(2), while H2B K11R mutants that mimic deacetylation promote cell death. Our results suggest that Hos3 HDAC deacetylates H2BK11ac, which in turn mediates H2BS10ph by Ste20 kinase. Together, these studies underscore a concerted series of enzyme reactions governing histone modifications that promote a switch from cell proliferation to cell death.  相似文献   

16.
17.
The intrinsically disordered, positively charged H4 histone tail is important for chromatin structure and function. We have explored conformational ensembles of human H4 tail in solution, with varying levels of charge neutralization via acetylation or amino-acid substitutions such as KQ. We have employed an explicit water model shown recently to be well suited for simulations of intrinsically disordered proteins.Upon progressive neutralization of the H4, its radius of gyration decreases linearly with the tail charge q, the trend is explained using a simple polymer model. While the wild type state (q=+8) is essentially a random coil, hyper-acetylated H4 (q=+3) is virtually as compact and stable as a globular protein of the same number of amino-acids.Conformational ensembles of acetylated H4 match the corresponding KX substitutions only approximately: based on the ensemble similarity, we propose KM as a possible alternative to the commonly used KQ.Possible effects of the H4 tail compaction on chromatin structure are discussed within a qualitative model in which the chromatin is highly heterogeneous, easily inter-converting between various structural forms. We predict that upon progressive charge neutralization of the H4 tail, the least compact sub-states of chromatin de-condense first, followed by de-condensation of more compact structures, e.g. those that harbor a high fraction of stacked di-nucleosomes. The predicted hierarchy of DNA accessibility increase upon progressive acetylation of H4 might be utilized by the cell for selective DNA accessibility control.  相似文献   

18.
19.
20.
Recent technological advancements have allowed for highly-sophisticated mass spectrometry-based studies of the histone code, which predicts that combinations of post-translational modifications (PTMs) on histone proteins result in defined biological outcomes mediated by effector proteins that recognize such marks. While significant progress has been made in the identification and characterization of histone PTMs, a full appreciation of the complexity of the histone code will require a complete understanding of all the modifications that putatively contribute to it. Here, using the top-down mass spectrometry approach for identifying PTMs on full-length histones, we report that lysine 37 of histone H2B is dimethylated in the budding yeast Saccharomyces cerevisiae. By generating a modification-specific antibody and yeast strains that harbor mutations in the putative site of methylation, we provide evidence that this mark exist in vivo. Importantly, we show that this lysine residue is highly conserved through evolution, and provide evidence that this methylation event also occurs in higher eukaryotes. By identifying a novel site of histone methylation, this study adds to our overall understanding of the complex number of histone modifications that contribute to chromatin function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号