首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Horizontally transferred DNA acquired through transformation and recombination has the potential to contribute to the diversity and evolution of naturally competent bacteria. However, many different factors affect the efficiency with which DNA can be transformed and recombined. In this study, we determined how the size of both homologous and nonhomologous regions affects transformation and recombination efficiencies in Xylella fastidiosa, a naturally competent generalist pathogen responsible for many emerging plant diseases. Our experimental data indicate that 96 bp of flanking homology is sufficient to initiate recombination, with recombination efficiencies increasing exponentially with the size of the homologous flanking region up to 1 kb. Recombination efficiencies also decreased with the size of the nonhomologous insert, with no recombination detected when 6 kb of nonhomologous DNA was flanked on either side by 1 kb of homologous sequences. Upon analyzing sequenced X. fastidiosa subsp. fastidiosa genomes for evidence of allele conversion, we estimated the mean size of recombination events to be 1,906 bp, with each event modifying, on average, 1.79% of the nucleotides in the recombined region. There is increasing evidence that horizontally acquired genes significantly affect the genetic diversity of X. fastidiosa, and DNA acquired through natural transformation could be a prominent mode of this horizontal transfer.  相似文献   

2.
Bacteria that are competent for natural genetic transformation, such as pneumococci and their commensal relatives Streptococcus mitis and Streptococcus oralis , take up exogenous DNA and incorporate it into their genomes by homologous recombination. Traditionally, it has been assumed that genetic material leaking from dead bacteria constitutes the sole source of external DNA for competent streptococci. Here we describe a mechanism for active acquisition of homologous DNA that dramatically increases the efficiency of gene exchange between and within the streptococcal species mentioned above. This mechanism gives competent streptococci access to a common gene pool that is significantly larger than their own genomes, a property representing a considerable advantage when these bacteria are subjected to external selection pressures, such as vaccination and treatment with antibiotics.  相似文献   

3.
Several streptococcal species are able to take up naked DNA from the environment and integrate it into their genomes by homologous recombination. This process is called natural transformation. In Streptococcus pneumoniae and related streptococcal species, competence for natural transformation is induced by a peptide pheromone through a quorum-sensing mechanism. Recently we showed that induction of the competent state initiates lysis and release of DNA from a subfraction of the bacterial population and that the efficiency of this process is influenced by cell density. Here we have further investigated the nature of this cell density-dependent release mechanism. Interestingly, we found that competence-induced pneumococci lysed competence-deficient cells of the same strain during cocultivation and that the efficiency of this heterolysis increased as the ratio of competent to noncompetent cells increased. Furthermore, our results indicate that the lysins made by competent pneumococci are not released into the growth medium. More likely, they are anchored to the surface of the competent cells by choline-binding domains and cause lysis of noncompetent pneumococci through cell-to-cell contact.  相似文献   

4.
Genetic recombination impacts on neisserial biology in two ways: (i) specific loci undergo rearrangement at high frequency leading to the formation of many different alleles; and (ii) Neisseria , being naturally competent for DNA transformation, provide a means to disseminate the novel alleles throughout a population. In this study pilE was used as a model system to examine heteroallelic recombination following DNA transformation. When gonococci were transformed with chromosomal donor DNA containing different pilE alleles, the majority of pilE recombinants arose through allelic replacement. Co-conversion analysis across pilE showed that in ∼ 85–90% of recombination events encompassing pilE and an adjacent opa locus, linkage was maintained (i.e. ∼ 10–15% of recombination events terminated within the ∼ 1000 base pair pilE/opaE interval). In addition to those recombinants that arose through allelic replacement, a large pilus-minus subpopulation was also observed (∼ 10% of all recombinants), indicating that many recombination events did not yield recombinant pilE s that could be assembled into functional pili. PilE mosaics increased following transformation with plasmid donor DNAs carrying pilE with limited flanking-sequence homology, suggesting a potential role for flanking-sequence homologies in mosaic formation. Overall, the data support the view that horizontal transmission of chromosomal DNA between gonococci will favour the spread of intact alleles, as opposed to expanding the allelic repertoire through the formation of gene mosaics.  相似文献   

5.
We asked if single-stranded vector DNA molecules could be used to reintroduce cloned DNA sequences into a eukaryotic cell and cause genetic transformation typical of that observed using double-stranded DNA vectors. DNA was presented to Saccharomyces cerevisiae following a standard transformation protocol, genetic transformants were isolated, and the physical state of the transforming DNA sequence was determined. We found that single-stranded DNA molecules transformed yeast cells 10- to 30-fold more efficiently than double-stranded molecules of identical sequence. More cells were competent for transformation by the single-stranded molecules. Single-stranded circular (ssc) DNA molecules carrying the yeast 2 μ plasmid-replicator sequence were converted to autonomously replicating double-stranded circular (dsc) molecules, suggesting their efficient utilization as templates for DNA synthesis in the cell. Single-stranded DNA molecules carrying 2 μ plasmid non-replicator sequences recombined with the endogenous multicopy 2 μ plasmid DNA. This recombination yielded either the simple molecular adduct expected from homologous recombination (40% of the transformants examined) or aberrant recombination products carrying incomplete transforming DNA sequences, endogenous 2 μ plasmid DNA sequences, or both (60% of the transformants examined). These aberrant recombination products suggest the frequent use of a recombination pathway that trims one or both of the substrate DNA molecules. Similar aberrant recombination products were detected in 30% of the transformants in cotransformation experiments employing single-stranded and double-stranded DNA molecules, one carrying the 2 μ plasmid replicator sequence and the other the selectable genetic marker. We conclude that single-stranded DNA molecules are useful vectors for the genetic transformation of a eukaryotic cell. They offer the advantage of high transformation efficiency, and yield the same intracellular DNA species obtained upon transformation with double-stranded DNA molecules. In addition, single-stranded DNA molecules can participate in a recombination pathway that trims one or both DNA recombination substrates, a pathway not detected, at least at the same frequency, when transforming with double-stranded DNA molecules  相似文献   

6.
Intra- and interspecific natural transformation has been observed in many prokaryotic species and is considered a fundamental mechanism for the generation of genetic variation. Recently, it has been described in detail how, in transformable Acinetobacter BD413 and Streptococcus pneumoniae, long stretches of nucleotides lacking homology were integrated into recipient genomes when they were linked on one side to a small piece of DNA with homology to resident DNA serving as a recA-dependent recombination anchor. Now, such homology-facilitated illegitimate recombination (HFIR) has also been detected in transformable Pseudomonas stutzeri. However, analysis of the recombinants revealed qualitative and quantitative differences in their generation compared with that in Acinetobacter BD413. In P. stutzeri, foreign DNA with an anchor sequence was integrated 105- to 106-fold less frequently than fully homologous DNA, but still at least 200-fold more frequently than without the anchor. The anchor sequence could be as small as 311 bp. Remarkably, in 98% of the events, the 3' end was integrated within the homologous anchor, whereas the 5' end underwent illegitimate fusion. Moreover, about one-third of the illegitimate fusion sites shared no or only a single identical basepair in foreign and resident DNA. The other fusions occurred within microhomologies of up to 6 bp with a higher GC content on average than the interacting nucleotide sequences. Foreign DNA of 69-1903 bp was integrated, and resident DNA of 22-2345 bp was lost. In a recA mutant, HFIR was not detectable. The findings suggest that genomic acquisition of foreign DNA by HFIR during transformation occurs widely in prokaryotes, but that details of the required recombination and strand fusion mechanisms may differ between organisms from different genera.  相似文献   

7.
田琇  张利  刘马峰 《微生物学通报》2019,46(7):1723-1730
基因的水平转移在细菌的进化中起着非常重要的作用。自然界中的细菌之间主要通过3种机制进行基因水平转移:由噬菌体介导的转导、接合转移和自然转化。自然转化是指自然感受态的细菌能够自发地从外界环境中摄取DNA分子并整合到自身基因组上的过程。该现象首先发现于肺炎链球菌,目前至少有83种细菌被发现具有发生自然转化的能力,其中革兰氏阳性菌以肺炎链球菌(Streptococcus pneumoniae,S. pneumoniae)为代表,革兰氏阴性菌以奈瑟氏菌(Neisseria)为代表,对其自然转化机制的研究和认识较为清楚,但不同细菌之间自然转化的机制有所差异。自然转化的生物学功能一直以来有以下几种推测:获取营养、修复DNA损伤、生物进化,而近年来对此认识争论不休。本文将详细描述细菌自然转化的分子机制,并对其主要的生物学功能争论焦点进行评述,以期对细菌自然转化有更深入的理解和认识。  相似文献   

8.
Advances in high-throughput DNA sequencing technologies have determined an explosion in the number of sequenced bacterial genomes. Comparative sequence analysis frequently reveals evidences of homologous recombination occurring with different mechanisms and rates in different species, but the large-scale use of computational methods to identify recombination events is hampered by their high computational costs. Here, we propose a new method to identify recombination events in large datasets of whole genome sequences. Using a filtering procedure of the gene conservation profiles of a test genome against a panel of strains, this algorithm identifies sets of contiguous genes acquired by homologous recombination. The locations of the recombination breakpoints are determined using a statistical test that is able to account for the differences in the natural rate of evolution between different genes. The algorithm was tested on a dataset of 75 genomes of Staphylococcus aureus and 50 genomes comprising different streptococcal species, and was able to detect intra-species recombination events in S. aureus and in Streptococcus pneumoniae. Furthermore, we found evidences of an inter-species exchange of genetic material between S. pneumoniae and Streptococcus mitis, a closely related commensal species that colonizes the same ecological niche. The method has been implemented in an R package, Reco, which is freely available from supplementary material, and provides a rapid screening tool to investigate recombination on a genome-wide scale from sequence data.  相似文献   

9.
Neisseria gonorrhoeae (Gc) pili undergo antigenic variation when the amino acid sequence of the pilin protein is changed, aiding in immune avoidance and altering pilus expression. Pilin antigenic variation occurs by RecA-dependent unidirectional transfer of DNA sequences from a silent pilin locus to the expressed pilin gene through high-frequency recombination events that occur at limited regions of homology. We show that the Gc recQ and recO genes are essential for pilin antigenic and phase variation and DNA repair but are not involved in natural DNA transformation. This suggests that a RecF-like pathway of recombination exists in Gc. In addition, mutations in the Gc recB, recC or recD genes revealed that a Gc RecBCD pathway also exists and is involved in DNA transformation and DNA repair but not in pilin antigenic variation.  相似文献   

10.
M. A. Hoelzer  R. E. Michod 《Genetics》1991,128(2):215-223
Natural genetic transformation in the bacterium Bacillus subtilis provides an experimental system for studying the evolutionary function of sexual recombination. The repair hypothesis proposes that during transformation the exogenous DNA taken up by cells is used as template for recombinational repair of damages in the recipient cell's genome. Earlier results demonstrated that the population density of transformed cells (i.e., sexual cells) increases, relative to nontransformed cells (primarily asexual cells), with increasing dosage of ultraviolet irradiation, provided that the cells are transformed with undamaged homologous DNA after they have become damaged. In nature, however, donor DNA for transformation is likely to come from cells that are as damaged as the recipient cells. In order to better simulate the effects of transformation in natural populations we conducted similar experiments as those just described using damaged donor DNA. We document in this report that transformants continue to increase in relative density even if they are transformed with damaged donor DNA. These results suggest that sites of transformation are often damaged sites in the recipient cell's genome.  相似文献   

11.
Intermolecular recombination of Chlamydomonas chloroplast genes has been analyzed in sexual crosses and following biolistic transformation. The pattern and position of specific exchange events within 15 kb of the 22-kb inverted repeat have been mapped with respect to known restriction fragment length polymorphism markers that distinguish the chloroplast genomes of the interfertile species Chlamydomonas reinhardtii and Chlamydomonas smithii. Recombinant progeny were selected from two- and three-factor crosses involving point mutations conferring herbicide (dr) and antibiotic resistance (er and spr) in the psbA, 23S and 16S ribosomal RNA genes, respectively. Exchange events were not randomly distributed over the 15-kb region, but were found to occur preferentially in a 0.7-kb sequence spanning the 3' end of the psbA gene and were much less common in an adjacent region of ca. 2.0 kb. These findings are corroborated by data showing that the dr mutation is unlinked genetically (3% recombination/kb) to the er and spr rRNA mutations, which are themselves linked and show ca. 1% recombination/kb. This discrepancy is significant since the dr-er and er-spr intervals are about the same length (ca. 7 kb). During chloroplast transformation, the 0.7-kb recombination hotspot also functions as a preferential site for exchange events leading to the integration of donor psbA gene sequences. The 0.7-kb hotspot region contains four classes of 18-37-bp direct repeats also found in other intergenic regions, but no open reading frame. Using deletion constructs in a chloroplast transformation assay, the hotspot was localized to a 500-bp region that lacks most of these repeats, which suggests that the repeats themselves are not responsible for the increased recombination frequency. Within this region, a 400-bp sequence is highly conserved between the chloroplast genomes of C. reinhardtii and C. smithii and includes several structural motifs characteristic of recombination hotspots in other systems.  相似文献   

12.
The human pathogen Campylobacter jejuni is one of more than 40 naturally competent bacterial species able to import macromolecular DNA from the environment and incorporate it into their genomes. However, in C. jejuni little is known about the genes involved in this process. We used random transposon mutagenesis to identify genes that are required for the transformation of this organism. We isolated mutants with insertions in 11 different genes; most of the mutants are affected in the DNA uptake stage of transformation, whereas two mutants are affected in steps subsequent to DNA uptake, such as recombination into the chromosome or in DNA transport across the inner membrane. Several of these genes encode proteins homologous to those involved in type II secretion systems, biogenesis of type IV pili, and competence for natural transformation in gram-positive and gram-negative species. Other genes identified in our screen encode proteins unique to C. jejuni or are homologous to proteins that have not been shown to play a role in the transformation in other bacteria.  相似文献   

13.
B Michel  B Niaudet    S D Ehrlich 《The EMBO journal》1982,1(12):1565-1571
We have constructed plasmids carrying direct internal repeats 260-2000 bp long. Monomers of such plasmids transformed Bacillus subtilis competent cells. The efficiency of transformation varied with the square of the length of repeats. The transformed clones harbored either the entire transforming plasmid and the plasmid arising by recombination between the repeats, or only the latter plasmid. Internally-repeated plasmids linearized by in vitro cleavage with restriction endonuclease could transform, yielding clones which exclusively harbored a plasmid resulting from recombination between the repeats. When the transforming plasmid carried repeats which differed slightly, conversion of one repeat into the other could occur. The following model of plasmid transformation accounts for these data: (1) plasmid DNA is cleaved and rendered linear in contact with competent cells; (2) a linear, at least partially double-stranded plasmid molecule is introduced or formed by repair within the cell; (3) a circular viable plasmid is produced by recombination between repeats carried on this molecule; (4) alternatively, a viable plasmid is produced by repairing the cut within one of the repeats by DNA synthesis which uses the other repeat as a template.  相似文献   

14.
Didelot X  Lawson D  Darling A  Falush D 《Genetics》2010,186(4):1435-1449
Bacteria and archaea reproduce clonally, but sporadically import DNA into their chromosomes from other organisms. In many of these events, the imported DNA replaces an homologous segment in the recipient genome. Here we present a new method to reconstruct the history of recombination events that affected a given sample of bacterial genomes. We introduce a mathematical model that represents both the donor and the recipient of each DNA import as an ancestor of the genomes in the sample. The model represents a simplification of the previously described coalescent with gene conversion. We implement a Monte Carlo Markov chain algorithm to perform inference under this model from sequence data alignments and show that inference is feasible for whole-genome alignments through parallelization. Using simulated data, we demonstrate accurate and reliable identification of individual recombination events and global recombination rate parameters. We applied our approach to an alignment of 13 whole genomes from the Bacillus cereus group. We find, as expected from laboratory experiments, that the recombination rate is higher between closely related organisms and also that the genome contains several broad regions of elevated levels of recombination. Application of the method to the genomic data sets that are becoming available should reveal the evolutionary history and private lives of populations of bacteria and archaea. The methods described in this article have been implemented in a computer software package, ClonalOrigin, which is freely available from http://code.google.com/p/clonalorigin/.  相似文献   

15.
1. DNA labelled with 5-bromo[(3)H]uracil was used to transform auxotrophic strains of Bacillus subtilis. 2. After various times of incubation, DNA was extracted from the transformed culture and subjected to equilibrium sedimentation in caesium chloride gradients. 3. In addition to heavy donor DNA and light recipient DNA, a component with an intermediate density was found and is believed to consist of a biological hybrid of donor and recipient. 4. The component of intermediate density was isolated and found to possess activity in transformation derived from both donor and recipient strains. 5. Denaturation of the component of intermediate density followed by centrifugation gave only one component, indicating that integration had occurred in both strands of the recipient DNA. 6. No integrated band was observed after uptake by competent cells of B. subtilis of heavy DNA prepared from Escherichia coli.  相似文献   

16.
To study the mechanism of deoxyribonucleic acid (DNA)-mediated gene transfer, normal rat cells were transfected with total cellular DNA extracted from polyoma virus-transformed cells. This resulted in the appearance of the transformed phenotype in 1 X 10(-6) to 3 X 10(-6) of the transfected cells. Transformation was invariably associated with the acquisition of integrated viral DNA sequences characteristic of the donor DNA. This was caused not by the integration of free DNA molecules, but by the transfer of large DNA fragments (10 to 20 kilobases) containing linked cellular and viral sequences. Although Southern blot analysis showed that integration did not appear to occur in a homologous region of the recipient chromosome, the frequency of transformation was rather high when compared with that of purified polyoma DNA, perhaps due to "position" effects or to the high efficiency of recombination of large DNA fragments.  相似文献   

17.
Natural transformation is the widespread biological process by which “competent” bacteria take up free DNA, incorporate it into their genomes, and become genetically altered or “transformed”. To curb often deleterious transformation by foreign DNA, several competent species preferentially take up their own DNA that contains specific DUS (DNA uptake sequence) watermarks. Our recent finding that ComP is the long sought DUS receptor in Neisseria species paves the way for the functional analysis of the DUS-ComP interdependence which is reported here. By abolishing/modulating ComP levels in Neisseria meningitidis, we show that the enhancement of transformation seen in the presence of DUS is entirely dependent on ComP, which also controls transformation in the absence of DUS. While peripheral bases in the DUS were found to be less important, inner bases are essential since single base mutations led to dramatically impaired interaction with ComP and transformation. Strikingly, naturally occurring DUS variants in the genomes of human Neisseria commensals differing from DUS by only one or two bases were found to be similarly impaired for transformation of N. meningitidis. By showing that ComPsub from the N. subflava commensal specifically binds its cognate DUS variant and mediates DUS-enhanced transformation when expressed in a comP mutant of N. meningitidis, we confirm that a similar mechanism is used by all Neisseria species to promote transformation by their own, or closely related DNA. Together, these findings shed new light on the molecular events involved in the earliest step in natural transformation, and reveal an elegant mechanism for modulating horizontal gene transfer between competent species sharing the same niche.  相似文献   

18.
P. Zawadzki  F. M. Cohan 《Genetics》1995,141(4):1231-1243
We investigated the size and continuity of DNA segments integrated in Bacillus subtilis transformation. We transformed B. subtilis strain 1A2 toward rifampicin resistance (coded by rpoB) with genomic DNA and with a PCR-amplified 3.4-kb segment of the rpoB gene from several donors. Restriction analysis showed that smaller lengths of donor DNA integrated into the chromosome with transformation by PCR-amplified DNA than by genomic DNA. Nevertheless, integration of very short segments (<2 kb) from large, genomic donor molecules was not a rare event. With PCR-amplified segments as donor DNA, smaller fragments were integrated when there was greater sequence divergence between donor and recipient. There was a large stochastic component to the pattern of recombination. We detected discontinuity in the integration of donor segments within the rpoB gene, probably due to multiple integration events involving a single donor molecule. The transfer of adaptations across Bacillus species may be facilitated by the small sizes of DNA segments integrated in transformation.  相似文献   

19.
Heterospecific transformation between Haemophilus influenzae and H. parainfluenzae was investigated by isopycnic analysis of deoxyribonucleic acid (DNA) extracts of (3)H-labeled transforming cells that had been exposed to (32)P-labeled, heavy transforming DNA. The density distribution of genetic markers from the resident DNA and from the donor DNA was determined by transformation assay of fractions from CsCl gradients, both species being used as recipients. About 50% of the (32)P atoms in H. parainfluenzae donor DNA taken up by H. influenzae cells were transferred to resident DNA, and only a small amount of the label was lost under conditions of little cell growth. There was less transfer in the reciprocal cross, and almost half of the donor label was lost. In both crosses, the transferred donor material transformed for the donor marker considerably more efficiently when assayed on the donor species than on the recipient species, indicating that at least some of the associated (32)P atoms are contained in relatively long stretches of donor DNA. When the transformed cultures were incubated under growth conditions, the donor marker associated with recipient DNA transformed the donor species with progressively decreasing efficiency. The data indicate that the low heterospecific transformation between H. influenzae and H. parainfluenzae may be due partly to events occurring before association of donor and resident DNA but results mostly from events that occur after the association of the two DNA preparations.  相似文献   

20.
C Mézard  D Pompon  A Nicolas 《Cell》1992,70(4):659-670
Interactions between similar but not identical (homeologous) DNA sequences play an important biological role in the evolution of genes and genomes. To gain insight into the underlying molecular mechanism(s) of genetic recombination, we have studied inter- and intramolecular homeologous recombination in S. cerevisiae during transformation. We found that homeologous DNAs recombine efficiently. Hybrid sequences were obtained between two mammalian cytochrome P450 cDNAs, sharing 73% identity, and between the yeast ARG4 gene and its human homeologous cDNA, sharing 52% identity. Sequencing data showed that the preferred recombination events are those corresponding to the overall alignment of the DNA sequences and that the junctions are within stretches of identity of variable length (2-21 nt). We suggest that these events occur by a conventional homologous recombination mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号