首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The T-lymphocyte pool can be subdivided into naïve (Tn), effector memory (Tem), and central memory (Tcm) T cells. In this study, we characterized in vitro short-term cultured anti-tumor human T lymphocytes generated by lentiviral transduction with an anti-tumor antigen TCR vector. Within 2 weeks of in vitro culture, the cultured T cells showed a Tcm-like phenotype illustrated by a high percentage of CD62L and CD45RO cells. When the cells were sorted into populations that were CD45RO+/CD62L-(Tem), CD45RO+/CD62L+(Tcm), or CD45ROlow/CD62L+(Tn) and co-cultured with antigen-matched tumor lines, the magnitude of cytokine release from these populations for IFNγ (Tn < Tcm < Tem) and IL-2 (Tn > Tcm > Tem) mimicked the types of immune cell responses observed in vivo. In comparing cell-mediated effector function, Tn were found to be deficient (relative to Tcm and Tem) in the ability to form conjugates with tumor cells and subsequent lytic activity. Moreover, analysis of the gene expression profiles of the in vitro cultured and sorted T-cell populations also demonstrated patterns consistent with their in vivo counterparts. When Tcm and Tem were tested for the ability to survive in vivo, Tcm displayed significantly increased engraftment and persistence in NOD/SCID/γc?/? mice. In general, a large percentage of in vitro generated anti-tumor T lymphocytes mimic a Tcm-like phenotype (based on phenotype, effector function, and increased persistence in vivo), which suggests that these Tcm-like cultured T cells may be optimal for adoptive immunotherapy.  相似文献   

2.
The potential of an attenuated Salmonella enterica serovar Typhimurium strain as a prophylactic anti-tumor vaccine against the murine fibrosarcoma WEHI 164 was evaluated. Tumor cells were transfected with the DNA sequence encoding the MHC class I-restricted peptide p60(217-225) from Listeria monocytogenes. BALB/c mice received a single orogastric immunization with Salmonella that translocates a chimeric p60 protein via its type III secretion system. Mice were subsequently challenged subcutaneously with p60(217-225)-expressing WEHI cells. In vivo protection studies revealed that 80% of these mice remained free of the fibrosarcoma after challenge, whereas all animals of the non-vaccinated control group did develop tumor growth. In further experiments, the distribution of tetramer-positive p60(217-225)-specific effector and memory CD8 T cells after Salmonella-based immunization and tumor application was analyzed. Costaining with CD62L and CD127 revealed a predominance of p60-specific central memory and effector memory CD8 T cells in spleens, whereas in blood samples the majority of p60-specific lymphocytes belonged to effector and effector memory CD8 T cell subsets. This is the first report demonstrating that a bacterial type III secretion system can be used for heterologous antigen delivery to induce cytotoxic effector and memory CD8 T cell responses resulting in an efficient prevention of tumor growth.  相似文献   

3.
Three major subsets of Ag-experienced CD8+ T cells have been identified according to their expression of CD62L and CD127. These markers are associated with central memory T cells (CD62L+ CD127+), effector memory T cells (CD162L- CD127+), and effector T cells (CD62L- CD127-). In this study we characterized the development of these three populations during acute and chronic viral infections and after immunization with virus-like particles and determined their lineage relation and functional and protective properties. We found that the balance between the three subsets was critically regulated by the availability of Ag and time. After initial down-regulation of CD127, the responding CD8+ T cell population down-regulated CD62L and re-expressed CD127. Dependent on Ag availability, the cells then further differentiated into CD62L- CD127- effector cells or, in the absence of Ag, re-expressed CD62L to become central memory T cells. Although all three populations efficiently produced effector cytokines such as IFN-gamma, CD62L- CD127- effector cells exhibited the highest ex vivo lytic potential. In contrast, CD62L+ CD127+ central memory T cells most efficiently produced IL-2 and proliferated extensively in vitro and in vivo upon antigenic restimulation. Strikingly, only effector and effector memory, but not central memory, T cells were able to protect against peripheral infection with vaccinia virus, whereas central memory T cells were most potent at protecting against systemic infection with lymphocytic choriomeningitis virus, indicating that the antiviral protective capacities of specific CD8+ T cell subsets are closely related to the nature of the challenging pathogen.  相似文献   

4.
During the antigen-dependant activation process several subsets CD8+ T cells appear with different phenotypic and functional characteristics. Recent studies indicate that the state of T cell differentiation radically affects their ability to effectively respond to tumor challenge, with early effector CD8+ T (CD62Lhigh) cells having better anti-tumor activity. Thus strategies aimed at optimizing the generation of such subpopulations could significantly enhance the effectiveness of adoptive cell therapy (ACT) for cancer. In this study, we show that priming of naïve CD8+ T cells in the presence of IL-12 selectively rescued early CD8+ CD62Lhi from activation induced cell death and resulted in the increased accumulation of this subset of CD8+ T cells. Furthermore, we demonstrated that IL-12 directly modulated the expression of CD62L on activated CD8+ T cells. When used for ACT, naïve CD8+ T cells primed in vitro in the presence of IL-12 showed superior anti-tumor activity toward B16 melanoma. Importantly, using the Pmel-1 model, priming pmel-1 cells in vitro with IL-12 reduced the state of functional tolerance associated with the non-mutated “self” tumor antigen gp100, as demonstrated by significant tumor responses in the absence of vaccination. Together, our results suggest that in vitro conditioning of naïve CD8+ T cells with IL-12 prior to ACT could significantly enhance their anti-tumor activity.  相似文献   

5.
Human memory CD8(+) T cell subsets, termed central memory and effector memory T cells, can be identified by expression of CD45RA, CD62 ligand (CD62L), and CCR7. Accordingly, functional differences have been described for each subset, reflecting unique roles in immunological memory. The common gamma-chain cytokines IL-15 and IL-7 have been shown to induce proliferation and differentiation of human CD8(+) T cell subsets, as well as increased effector functions (i.e., cytokines, cytotoxicity). In this study, we observed that addition of IL-15 or IL-7 to cultures of human CD8(+) T cells profoundly enhanced the IL-12-IL-18 pathway of IFN-gamma production. Importantly, IL-15 and IL-7 lowered the threshold concentrations of IL-12 and IL-18 required for induction of IFN-gamma by 100-fold. Comparison of IL-15 and IL-7 demonstrated that IL-15 was superior in its ability to enhance IL-12-IL-18-induced IFN-gamma, without evidence of a synergistic effect between IL-15 and IL-7. We also observed that IL-15- and IL-7-mediated enhancement of IL-12-IL-18-induced IFN-gamma production was a functional property of effector memory CD8(+) T cells. Despite a lack of association between cell division and acquisition of IL-12-IL-18-induced IFN-gamma, down-regulation of CD62L expression correlated well with increased IL-12-IL-18-induced IFN-gamma. Purified central memory T cells stimulated with IL-15 and IL-7 down-regulated CD62L and acquired potent IL-12-IL-18-induced IFN-gamma similar to effector memory T cells. Thus, in addition to its known role in development of T cell memory, IL-15 may amplify memory CD8(+) T cell effector functions by increasing sensitivity to proinflammatory cytokine stimulation.  相似文献   

6.
Tumor-draining lymph nodes (TDLN) contain sensitized T cells with the phenotype CD62 L-selectin(low) (CD62L(low)) that can be activated ex vivo with anti-CD3 mAb and IL-2 to acquire potent dose-dependent effector function manifested upon adoptive transfer to secondary tumor-bearing hosts. In this study advanced tumor models were used as a stringent comparison of efficacy for the CD62L(low) subset, comprising 5-7% of the TDLN cells, vs the total population of TDLN cells following culture in high dose IL-2 (100 U/ml). During the 9-day activation period the total number of CD8+ T cells increased 1500-fold, with equivalent proliferation in the CD62L(low) vs the total TDLN cell cultures. Adoptive transfer of activated CD62L(low) cells eliminated 14-day pulmonary metastases and cured 10-day s.c. tumors, whereas transfer of maximally tolerated numbers of total TDLN cells was not therapeutic. Despite their propagation in a high concentration of IL-2, the hyperexpanded CD62L(low) subset of TDLN cells functioned in vivo without exogenous IL-2, and CD8+ T cells demonstrated relative helper independence. Moreover, the anti-tumor response was specific for the sensitizing tumor, and long term memory was established. The facile enrichment of tumor-reactive TDLN T cells, based on the CD62L(low) phenotype, circumvents the need for prior knowledge of the relevant tumor Ags. Coupling the isolation of pre-effector T cells with rapid ex vivo expansion to >3 logs could overcome some of the shortcomings of active immunotherapy or in vivo cytokine treatment, where selective robust expansion of effector cells has been difficult to achieve.  相似文献   

7.
Adoptive cell transfer (ACT) using ex vivo-expanded anti-tumor T cells such as tumor-infiltrated lymphocytes or genetically engineered T cells potently eradicates established tumors. However, these two approaches possess obvious limitations. Therefore, we established a novel methodology using total tumor RNA (ttRNA) to prime dendritic cells (DC) as a platform for the ex vivo generation of anti-tumor T cells. We evaluated the antigen-specific expansion and recognition of T cells generated by the ttRNA–DC–T platform, and directly modulated the differentiation status of these ex vivo-expanded T cells with a cytokine cocktail. Furthermore, we evaluated the persistence and in vivo anti-tumor efficacy of these T cells through murine xenograft and syngeneic tumor models. During ex vivo culture, IL-2 preferentially expanded CD4 subset, while IL-7 enabled homeostatic proliferation from the original precursors. T cells tended to lose CD62L during ex vivo culture using IL-2; however, IL-12 could maintain high levels of CD62L by increasing expression on effector T cells (Tem). In addition, we validated that OVA RNA–DC only selectively expanded T cells in an antigen-specific manner. A cytokine cocktail excluding the use of IL-2 greatly increased CD62Lhigh T cells which specifically recognized tumor cells, engrafted better in a xenograft model and exhibited superior anti-tumor activities in a syngeneic intracranial model. ACT using the ex vivo ttRNA–DC–T platform in conjunction with a cytokine cocktail generated potent CD62Lhigh anti-tumor T cells and imposes a novel T cell-based therapeutic with the potential to treat brain tumors and other cancers.  相似文献   

8.
Defining the cellular composition of the memory T cell pool has been complicated by an inability to distinguish effector and memory T cells. We present here an activation profile assay, using anti-CD3 and antigenic stimuli, that clearly distinguishes effector and memory CD4 T cells and defines subsets of long-lived memory CD4 T cells based on CD62 ligand (CD62L) expression. The CD62L(low) memory subset functionally resembles effector cells, exhibiting hyper-responsiveness to antigenic and anti-CD3 mediated stimuli, high proliferative capacity, and rapid activation kinetics. The CD62L(high) memory subset functionally resembles resting memory cells, exhibiting hyporesponsiveness to anti-CD3 stimuli, lower proliferative capacity, and slower activation kinetics. Our results indicate that the memory CD4 T cell pool is heterogeneous, consisting of persisting effectors and resting memory T cells.  相似文献   

9.
Technical difficulties in tracking endogenous CD4 T lymphocytes have limited the characterization of tumor-specific CD4 T cell responses. Using fluorescent MHC class II/peptide multimers, we defined the fate of endogenous Leishmania receptor for activated C kinase (LACK)-specific CD4 T cells in mice bearing LACK-expressing TS/A tumors. LACK-specific CD44(high)CD62L(low) CD4 T cells accumulated in the draining lymph nodes and had characteristics of effector cells, secreting IL-2 and IFN-gamma upon Ag restimulation. Increased frequencies of CD44(high)CD62L(low) LACK-experienced cells were also detected in the spleen, lung, liver, and tumor itself, but not in nondraining lymph nodes, where the cells maintained a naive phenotype. The absence of systemic redistribution of LACK-specific memory T cells correlated with the presence of tumor. Indeed, LACK-specific CD4 T cells with central memory features (IL-2(+)IFN-gamma(-)CD44(high)CD62L(high) cells) accumulated in all peripheral lymph nodes of mice immunized with LACK-pulsed dendritic cells and after tumor resection. Together, our data demonstrate that although tumor-specific CD4 effector T cells producing IFN-gamma are continuously generated in the presence of tumor, central memory CD4 T cells accumulate only after tumor resection. Thus, the continuous stimulation of tumor-specific CD4 T cells in tumor-bearing mice appears to hinder the systemic accumulation of central memory CD4 T lymphocytes.  相似文献   

10.
The down-regulation of CD62L that accompanies T lymphocyte activation is thought to redirect cells away from lymph nodes to sites of infection. In this study, CD62L was maintained on Ag-activated T cells and their distribution, and ability to clear pathogen from peripheral sites determined. CD62L was down-regulated on Ag-specific CD8 T cells in lungs of C57BL/6 mice but maintained in CD62L transgenic mice at day 8 after influenza infection. However, the numbers of influenza-specific CD8 T cells recruited were similar in CD62L transgenic and C57BL/6 mice. Memory CD8 T cell numbers in the lungs and noninvolved organs 100 days after primary infection were similar in CD62L transgenic and C57BL/6 mice, despite differing CD62L expression. Transgenic mice expressing wild-type CD62L cleared a recombinant vaccinia virus expressing an influenza-derived CD8 T cell epitope as efficiently as C57BL/6 mice. However, transgenic mice expressing a protease resistant mutant of CD62L showed significantly delayed viral clearance, despite normal CTL generation and the presence of CD107a and IFN-gamma expressing influenza-specific CD8 T cells. These results demonstrate that CD62L down-regulation is not required for CD8 memory cells to home to sites of infection. However, their ability to clear virus is significantly compromised if CD62L shedding is abrogated.  相似文献   

11.
Cutting edge: rapid in vivo killing by memory CD8 T cells   总被引:11,自引:0,他引:11  
In this study, we examined the cytotoxic activity of effector and memory CD8 T cells in vivo. At the peak of the CTL response following an acute lymphocytic choriomeningitis virus infection, effector CD8 T cells exhibited extremely rapid killing and started to eliminate adoptively transferred target cells within 15 min by a perforin-dependent mechanism. Although resting memory CD8 T cells are poorly cytolytic by in vitro (51)Cr release assays, there was rapid elimination (within 1-4 h) of target cells after transfer into immune mice, and both CD62L(high) and CD62L(low) memory CD8 T cells were able to kill rapidly in vivo. Strikingly, when directly compared on a per cell basis, memory CD8 T cells were only slightly slower than effector cells in eliminating target cells. These data indicate that virus specific memory CD8 T cells can rapidly acquire cytotoxic function upon re-exposure to Ag and are much more efficient killers in vivo than previously appreciated.  相似文献   

12.
13.
Antigen-experienced T cells have been divided into CD62L+ CCR7+ central memory (TCM) and CD62L- CCR7- effector memory (TEM) cells. Here, we examined coexpression of CD62L and CCR7 in lymphocytic choriomeningitis virus-specific memory CD8 T cells from both lymphoid and nonlymphoid tissues. Three main points emerged: firstly, memory cells frequently expressed a mixed CD62L- CCR7+ phenotype that differed from the phenotypes of classical TEM and TCM cells; secondly, TCM cells were not restricted to lymphoid organs but were also present in significant numbers in nonlymphoid tissues; and thirdly, a major shift from a TCM to TEM phenotype was found in memory cells that had been stimulated repetitively with antigen.  相似文献   

14.
The relative contributions of CD62L(high) (central) memory and CD62L(low) (effector) memory T cell populations to recall responses are poorly understood, especially in the respiratory tract. In this study, we took advantage of a dual-adoptive transfer system in the mouse to simultaneously follow the recall response of effector and central memory subpopulations to intranasal parainfluenza virus infection. Using MHC class I and class II multimers, we tracked the responses of Ag-specific CD8(+) and CD4(+) memory T cells in the same animals. The data show that effector memory T cells mounted recall responses that were equal to, or greater than, those mounted by central memory T cells. Moreover, effector memory T cells were more efficient at subsequently establishing a second generation of memory T cells. These data contrast with other studies indicating that central memory CD8(+) T cells are the prominent contributors to systemic virus infections.  相似文献   

15.
A human memory T cell subset with stem cell-like properties   总被引:1,自引:0,他引:1  
Immunological memory is thought to depend on a stem cell-like, self-renewing population of lymphocytes capable of differentiating into effector cells in response to antigen re-exposure. Here we describe a long-lived human memory T cell population that has an enhanced capacity for self-renewal and a multipotent ability to derive central memory, effector memory and effector T cells. These cells, specific to multiple viral and self-tumor antigens, were found within a CD45RO(-), CCR7(+), CD45RA(+), CD62L(+), CD27(+), CD28(+) and IL-7Rα(+) T cell compartment characteristic of naive T cells. However, they expressed large amounts of CD95, IL-2Rβ, CXCR3, and LFA-1, and showed numerous functional attributes distinctive of memory cells. Compared with known memory populations, these lymphocytes had increased proliferative capacity and more efficiently reconstituted immunodeficient hosts, and they mediated superior antitumor responses in a humanized mouse model. The identification of a human stem cell-like memory T cell population is of direct relevance to the design of vaccines and T cell therapies.  相似文献   

16.
We have previously demonstrated that immunotherapy combining agonistic anti-CD40 and IL-2 (IT) results in synergistic anti-tumor effects. IT induces expansion of highly cytolytic, antigen-independent “bystander-activated” (CD8+CD44high) T cells displaying a CD25NKG2D+ phenotype in a cytokine dependent manner, which were responsible for the anti-tumor effects. While much attention has focused on CD4+ T cell help for antigen-specific CD8+ T cell expansion, little is known regarding the role of CD4+ T cells in antigen-nonspecific bystander-memory CD8+ T cell expansion. Utilizing CD4 deficient mouse models, we observed a significant expansion of bystander-memory T cells following IT which was similar to the non-CD4 depleted mice. Expanded bystander-memory CD8+ T cells upregulated PD-1 in the absence of CD4+ T cells which has been published as a hallmark of exhaustion and dysfunction in helpless CD8+ T cells. Interestingly, compared to CD8+ T cells from CD4 replete hosts, these bystander expanded cells displayed comparable (or enhanced) cytokine production, lytic ability, and in vivo anti-tumor effects suggesting no functional impairment or exhaustion and were enriched in an effector phenotype. There was no acceleration of the post-IT contraction phase of the bystander memory CD8+ response in CD4-depleted mice. The response was independent of IL-21 signaling. These results suggest that, in contrast to antigen-specific CD8+ T cell expansion, CD4+ T cell help is not necessary for expansion and activation of antigen-nonspecific bystander-memory CD8+ T cells following IT, but may play a role in regulating conversion of these cells from a central memory to effector phenotype. Additionally, the expression of PD-1 in this model appears to be a marker of effector function and not exhaustion.  相似文献   

17.
A promising strategy in tumor immunotherapy is the use of activated dendritic cells as vehicles for tumor vaccines with the goal of activating anti-tumor T cell responses. Current formulations for dendritic cell-based immunotherapies have limited effects on patient survival, providing motivation for further investigation of ways to enhance dendritic cell priming of anti-tumor T cell responses. Using a brief in vitro priming model, we have found that B7-H1 expressed by activated dendritic cells is integrated during priming of naïve CD8+ T cells and functions to limit the differentiation of effector T cell responses. CD8+ T cells primed by B7-H1-deficient dendritic cells exhibit increased production of IFN-γ, enhanced target cell killing, and improved anti-tumor activity. Additionally, enhanced memory populations arise from CD8+ T cells primed by B7-H1-deficient dendritic cells. Based on these findings, we suggest that early blockade of B7-H1 signaling should be investigated as a strategy to improve dendritic cell-based anti-tumor immunotherapy.  相似文献   

18.
A subset of T cells in human peripheral blood expresses CD161 (NKR-P1A) receptors that are primarily associated with NK cells. In the current study we isolated blood T cell subsets according to the expression of CD161 and examined their contents of naive, central memory, and effector memory cells and their capacities for proliferation, cytokine secretion, and natural cytolysis. We found that CD4+CD161- and CD8+CD161- subsets contained predominantly naive T cells that secreted high levels of IL-2 after in vitro stimulation, and CD4+CD161int and CD8+CD161int subsets contained predominantly effector and central memory T cells that secreted high levels of IFN-gamma and TNF-alpha. All of these subsets showed vigorous proliferation after stimulation in vitro, but none had NK lytic activity. Unexpectedly, the CD8+CD161+ cells contained an anergic CD8alpha+CD8betalow/-CD161high T cell subset that failed to proliferate, secrete cytokines, or mediate NK lytic activity.  相似文献   

19.
Whether true memory T cells develop in the face of chronic infection such as tuberculosis remains controversial. To address this question, we studied CD8+ T cells specific for the Mycobacterium tuberculosis ESAT6-related Ags TB10.3 and TB10.4. The shared epitope TB10.3/10.4(20-28) is presented by H-2 K(d), and 20-30% of the CD8+ T cells in the lungs of chronically infected mice are specific for this Ag following respiratory infection with M. tuberculosis. These TB10.3/10.4(20-28)-specific CD8+ T cells produce IFN-gamma and TNF and express CD107 on their cell surface, which indicates their likely role as CTL in vivo. Nearly all of the Ag-specific CD8+ T cells in the lungs of chronically infected mice had a T effector cell phenotype based on their low expression of CD62L and CD45RB. In contrast, a population of TB10.3/10.4(20-28)-specific CD8+ T cells was identified in the lymphoid organs that express high levels of CD62L and CD45RB. Antibiotic treatment to resolve the infection led to a contraction of the Ag-specific CD8+ T cell population and was accompanied by an increase in the proportion of CD8+ T cells with a central memory phenotype. Finally, challenge of memory-immune mice with M. tuberculosis was accompanied by significant expansion of TB10.3/10.4(20-28)-specific CD8+ T cells, which suggests that these cells are in fact functional memory T cells.  相似文献   

20.
Naive CD4+ T cells use L-selectin (CD62L) expression to facilitate immune surveillance. However, the reasons for its expression on a subset of memory CD4+ T cells are unknown. We show that memory CD4+ T cells expressing CD62L were smaller, proliferated well in response to tetanus toxoid, had longer telomeres, and expressed genes and proteins consistent with immune surveillance function. Conversely, memory CD4+ T cells lacking CD62L expression were larger, proliferated poorly in response to tetanus toxoid, had shorter telomeres, and expressed genes and proteins consistent with effector function. These findings suggest that CD62L expression facilitates immune surveillance by programming CD4+ T cell blood and lymph node recirculation, irrespective of naive or memory CD4+ T cell phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号