首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed to evaluate the efficiency of Burkholderia xenovorans LB400 cells and their cell extract to remediate 4-chlorobiphenyl (4-CB). The bacterium previously induced with 4-CB was able to degrade up to 98% of initial 50 mg L?1 of 4-CB from mineral medium within 96 h of incubation. The degradation of 4-CB occurred through the formation of meta-cleavage product 2-hydroxy-6-oxo-6phenylhexa-2,4-dienoic acid (HOPDA), as revealed through enzymatic assay of 2,3-dihydroxybiphenyl 1,2-dioxygenase (2,3-DHBD). A derivative of 1,2-benzenedicarboxylic acid was observed as one of the major intermediate metabolites of 4-CB degradation. Time course production of 2,3-DHBD during growth corresponds with the degradation pattern of 4-CB by the bacterium. In vitro degradation of 4-CB using cell extract of B. xenovorans showed complete degradation of initial 25 mg L?1 of 4-CB within 6 h of incubation. To the best of the authors' knowledge, this is the first report in which in vitro degradation of 4-CB using cell extract of Burkholderia xenovorans is presented.  相似文献   

2.
Polychlorobiphenyls (PCBs) are toxic and persistent organic pollutants that are widely distributed in the environment. Burkholderia xenovorans LB400 is capable of degrading aerobically an unusually wide range of PCBs. However, during PCB-degradation B. xenovorans LB400 generates reactive oxygen species (ROS) that affect its viability. The aim of this study was to increase the efficiency of PCB-degradation of B. xenovorans LB400 by adding antioxidant compounds that could increase tolerance to oxidative stress. The effect of antioxidant compounds on the growth, morphology and PCB-degradation by B. xenovorans LB400 was evaluated. α-Tocopherol or vitamin E (vitE) and berry extract (BE) increased slightly the growth of strain LB400 on biphenyl, whereas in presence of ascorbic acid or vitamin C (vitC) an inhibition of growth was observed. The growth of B. xenovorans LB400 in glucose was inhibited by the addition of 4-chlorobiphenyl (4-CB). Interestingly, in presence of α-tocopherol the growth of strain LB400 was less affected by 4-CB. By transmission electronic microscopy it was observed that α-tocopherol preserved the cell membranes and improved cell integrity of glucose-grown LB400 cells exposed to 4-CB, suggesting a protective effect of α-tocopherol. Notably, α-tocopherol increased biphenyl and 4-CB degradation by B. xenovorans LB400 in an aqueous solution. The effect of antioxidants compounds on PCB-bioremediation was evaluated in agricultural soil spiked with 2-chlorobiphenyl (2-CB), 4-CB and 2,4'-chlorobiphenyl (2,4'-CB). For bioaugmentation, LB400 cells grown on biphenyl and subsequently incubated with pyruvate were added to the soil. Native soil microbiota was able to remove PCBs. Bioaugmentation with strain LB400 increased strongly the PCB-degradation rate. Bioaugmentation with strain LB400 and biostimulation with α-tocopherol or berry extract increased further the PCB degradation. Half-life of 2,4'-CB decreased by bioaugmentation from 24 days to 4 days and by bioaugmentation in presence of α-tocopherol and berry extract to 2 days. By bioaugmentation with strain LB400, 85% of 2,4'-CB was degraded in 20 days, whereas bioaugmentation with strain LB400 and biostimulation with α-tocopherol or berry extract reduced the time to less than 13 days. This indicates that antioxidant compounds stimulated PCB-degradation in soil. Therefore, the addition of antioxidant compounds constitutes an attractive strategy for the scale-up of aerobic PCB-bioremediation processes.  相似文献   

3.
Pseudomonas aeruginosa, Yersinia pestis, and many other bacteria are able to utilize the C5-dicarboxylic acid itaconate (methylenesuccinate). Itaconate degradation starts with its activation to itaconyl coenzyme A (itaconyl-CoA), which is further hydrated to (S)-citramalyl-CoA, and citramalyl-CoA is finally cleaved into acetyl-CoA and pyruvate. The xenobiotic-degrading betaproteobacterium Burkholderia xenovorans possesses a P. aeruginosa-like itaconate degradation gene cluster and is able to grow on itaconate and its isomer mesaconate (methylfumarate). Although itaconate degradation proceeds in B. xenovorans in the same way as in P. aeruginosa, the pathway of mesaconate utilization is not known. Here, we show that mesaconate is metabolized through its hydration to (S)-citramalate. The latter compound is then metabolized to acetyl-CoA and pyruvate with the participation of two enzymes of the itaconate degradation pathway, a promiscuous itaconate-CoA transferase able to activate (S)-citramalate in addition to itaconate and (S)-citramalyl-CoA lyase. The first reaction of the pathway, the mesaconate hydratase (mesaconase) reaction, is catalyzed by a class I fumarase. As this enzyme (Bxe_A3136) has similar efficiencies (kcat/Km) for both fumarate and mesaconate hydration, we conclude that B. xenovorans class I fumarase is in fact a promiscuous fumarase/mesaconase. This promiscuity is physiologically relevant, as it allows the growth of this bacterium on mesaconate as a sole carbon and energy source.  相似文献   

4.
Burkholderia xenovorans LB400是一株多氯联苯(polychlorinated biphenyls,PCBs)降解菌,可以氧化含有1?6个氯取代基的多氯联苯。近年来,由于其广泛的底物谱和优异的降解性能,菌株LB400已成为研究原核生物降解多氯联苯的生物化学和分子生物学方面的模式生物。目前关于PCBs的微生物降解研究已不再局限于对微生物资源的挖掘,而是更多地聚焦在LB400等降解菌的PCBs降解基因、降解酶的酶学特性以及酶的人工分子进化等方面。同时,LB400作为早期发现的降解菌,其对多氯联苯的降解途径、底物范围及相关机制也被广泛探讨;但是对于PCBs降解相关基因的调控研究较少。因此,本文以Burkholderia xenovorans LB400对多氯联苯降解为核心,通过综述其代谢途径、代谢相关基因和酶系以及降解应用等方面的研究进展,以期为深入探讨Burkholderia xenovorans LB400的应用以及进一步在遗传、分子和生化水平研究其他多氯联苯降解菌株提供借鉴。  相似文献   

5.
6.
Two-phase partitioning bioreactors (TPPBs) can be used to biodegrade environmental contaminants after their extraction from soil. TPPBs are typically stirred tank bioreactors containing an aqueous phase hosting the degrading microorganism and an immiscible, non-toxic and non-bioavailable organic phase functioning as a reservoir for hydrophobic compounds. Biodegradation of these compounds in the aqueous phase results in thermodynamic disequilibrium and partitioning of additional compounds from the organic phase into the aqueous phase. This self-regulated process can allow the delivery of large amounts of hydrophobic substances to degrading microorganisms. This paper explores the reactor conditions under which the polychlorinated biphenyl (PCB) degrader Burkholderia xenovorans LB400 can degrade significant amounts of the PCB mixture Aroclor(R) 1242. Aroclor(R) degradation was found to stall after approximately 40 h if no carbon source other than PCBs was available in the reactor. Sodium pyruvate was found to be a suitable carbon source to maintain microbial activity against PCBs and to function as a substrate for additional cell growth. Both biphenyl (while required during the inoculum preparation) and glucose had a negative effect during the Aroclor(R) degradation phase. Initial Aroclor(R) 1242 degradation rates in the presence of pyruvate were high (6.2 mg L(-1) h(-1)) and 85% of an equivalent concentration of 100 mg Aroclor(R) 1242 per L aqueous phase could be degraded in 48 h, which suggest that solvent extraction of PCBs from soil followed by their biodegradation in TPPBs might be a feasible remediation option.  相似文献   

7.
We examined the metabolism of dibenzofuran (DF) and dibenzo-p-dioxin (DD) by the biphenyl dioxygenase (BPDO) of Comamonas testosteroni B-356 and compared it with that of Burkholderia xenovorans LB400. Data showed that both enzymes oxygenated DF at a low rate, but Escherichia coli cells expressing LB400 BPDO degraded DF at higher rate (30 nmol in 18 h) compared with cells expressing B-356 BPDO (2 nmol in 18 h). Furthermore, both BPDOs produced dihydro-dihydroxy-dibenzofuran as a major metabolite, which resulted from the lateral oxygenation of DF. 2,2,3-Trihydroxybiphenyl (resulting from angular oxygenation of DF) was a minor metabolite produced by both enzymes. Deuterated DF was used to demonstrate the production of 2,2,3-dihydroxybiphenyl through angular oxygenation of DF. When tested for their ability to oxygenate DD, both enzymes produced as sole metabolite, 2,2,3-trihydroxybiphenyl ether at about the same rate, indicating similar catalytic properties toward this substrate. Altogether, although LB400 and B-356 BPDOs oxygenate a different range of chlorobiphenyls, their metabolite profiles toward DF and DD are similar. This suggests that co-planarity influences the regiospecificity of BPDO toward DF and DD to a higher extent than the presence of an ortho substituent on the molecule.  相似文献   

8.
Previous work has shown that the C-terminal portion of BphA, especially two amino acid segments designated region III and region IV, influence the regiospecificity of the biphenyl dioxygenase (BPDO) toward 2,2'-dichlorobiphenyl (2,2'-CB). In this work, we evolved BPDO by shuffling bphA genes amplified from polychlorinated biphenyl-contaminated soil DNA. Sets of approximately 1-kb DNA fragments were amplified with degenerate primers designed to amplify the C-terminal portion of bphA. These fragments were shuffled, and the resulting library was used to replace the corresponding fragment of Burkholderia xenovorans LB400 bphA. Variants were screened for their ability to oxygenate 2,2'-CB onto carbons 5 and 6, which are positions that LB400 BPDO is unable to attack. Variants S100, S149, and S151 were obtained and exhibited this feature. Variant S100 BPDO produced exclusively cis-5,6-dihydro-5,6-dihydroxy-2,2'-dichlorobiphenyl from 2,2'-CB. Moreover, unlike LB400 BPDO, S100 BphA catalyzed the oxygenation of 2,2',3,3'-tetrachlorobiphenyl onto carbons 5 and 6 exclusively and it was unable to oxygenate 2,2',5,5'-tetrachlorobiphenyl. Based on oxygen consumption measurements, variant S100 oxygenated 2,2'-CB at a rate of 16 +/- 1 nmol min(-1) per nmol enzyme, which was similar to the value observed for LB400 BPDO. cis-5,6-Dihydro-5,6-dihydroxy-2,2'-dichlorobiphenyl was further oxidized by 2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase (BphB) and 2,3-dihydroxybiphenyl dioxygenase (BphC). Variant S100 was, in addition, able to oxygenate benzene, toluene, and ethyl benzene. Sequence analysis identified amino acid residues M237 S238 and S283 outside regions III and IV that influence the activity toward doubly ortho-substituted chlorobiphenyls.  相似文献   

9.
It is now established that several amino acids of region III of the biphenyl dioxygenase (BPDO) alpha subunit are involved in substrate recognition and regiospecificity toward chlorobiphenyls. However, the sequence pattern of the amino acids of that segment of seven amino acids located in the C-terminal portion of the alpha subunit is rather limited in BPDOs of natural occurrence. In this work, we have randomly mutated simultaneously four residues (Thr(335)-Phe(336)-Ile(338)-Ile(341)) of region III of Burkholderia xenovorans LB400 BphA. The library was screened for variants able to oxygenate 2,2'-dichlorobiphenyl (2,2'-CB). Replacement of Phe(336) with Met or Ile with a concomitant change of Thr(335) to Ala created new variants that transformed 2,2'-CB into 3,4-dihydro-3,4-dihydroxy-2,2'-dichlorobiphenyl, which is a dead end metabolite that was not cleaved by BphC. Replacement of Thr(335)-Phe(336) with Ala(335)-Leu(336) did not cause this type of phenotypic change. Regiospecificity toward congeners other than 2,2'-CB that were oxygenated more efficiently by variant Ala(335)-Met(336) than by LB400 BPDO was similar for both enzymes. Thus structural changes that altered the regiospecificity toward 2,2'-CB did not affect the metabolite profile of other congeners, although it affected the rate of conversion of these congeners. It was especially noteworthy that both LB400 BPDO and the Ala(335)-Met(336) variant generated 2,3-dihydroxy-2',4,4'-trichlorobiphenyl as the sole metabolite from 2,4,2',4'-CB and 4,5-dihydro-4,5-dihydroxy-2,3,2',3'-tetrachlorobiphenyl as the major metabolite from 2,3,2',3'-CB. This shows that 2,4,2',4'-CB is oxygenated principally onto vicinal ortho-meta carbons 2 and 3 and that 2,3,2',3'-CB is oxygenated onto meta-para carbons 4 and 5 by both enzymes. The data suggest that interactions between the chlorine substitutes on the phenyl ring and specific amino acid residues of the protein influence the orientation of the phenyl ring inside the catalytic pocket.  相似文献   

10.
11.
The 80-kb dit cluster of Burkholderia xenovorans LB400 encodes the catabolism of abietane diterpenoids. This cluster includes ditQ and ditU, predicted to encode cytochromes P450 (P450s) belonging to the poorly characterized CYP226A subfamily. Using proteomics, we identified 16 dit-encoded proteins that were significantly more abundant in LB400 cells grown on dehydroabietic acid (DhA) or abietic acid (AbA) than in succinate-grown cells. A key difference in the catabolism of DhA and AbA lies in the differential expression of the P450s; DitU was detected only in the AbA-grown cells, whereas DitQ was expressed both during growth on DhA and during growth on AbA. Analyses of insertion mutants showed that ditQ was required for growth on DhA, ditU was required for growth on AbA, and neither gene was required for growth on the central intermediate, 7-oxo-DhA. In cell suspension assays, patterns of substrate removal and metabolite accumulation confirmed the role of DitU in AbA transformation and the role of DitQ in DhA transformation. Spectral assays revealed that DitQ binds both DhA (dissociation constant, 0.98 ± 0.01 μM) and palustric acid. Finally, DitQ transformed DhA to 7-hydroxy-DhA in vitro. These results demonstrate the distinct roles of the P450s DitQ and DitU in the transformation of DhA and AbA, respectively, to 7-oxo-DhA in a convergent degradation pathway.  相似文献   

12.
The recently identified benzoate oxidation (box) pathway in Burkholderia xenovorans LB400 (LB400 hereinafter) assimilates benzoate through a unique mechanism where each intermediate is processed as a coenzyme A (CoA) thioester. A key step in this process is the conversion of 3,4-dehydroadipyl-CoA semialdehyde into its corresponding CoA acid by a novel aldehyde dehydrogenase (ALDH) (EC 1.2.1.x). The goal of this study is to characterize the biochemical and structural properties of the chromosomally encoded form of this new class of ALDHs from LB400 (ALDHC) in order to better understand its role in benzoate degradation. To this end, we carried out kinetic studies with six structurally diverse aldehydes and nicotinamide adenine dinucleotide (phosphate) (NAD + and NADP +). Our data definitively show that ALDHC is more active in the presence of NADP + and selective for linear medium-chain to long-chain aldehydes. To elucidate the structural basis for these biochemical observations, we solved the 1.6-Å crystal structure of ALDHC in complex with NADPH bound in the cofactor-binding pocket and an ordered fragment of a polyethylene glycol molecule bound in the substrate tunnel. These data show that cofactor selectivity is governed by a complex network of hydrogen bonds between the oxygen atoms of the 2′-phosphoryl moiety of NADP + and a threonine/lysine pair on ALDHC. The catalytic preference of ALDHC for linear longer-chain substrates is mediated by a deep narrow configuration of the substrate tunnel. Comparative analysis reveals that reorientation of an extended loop (Asn478-Pro490) in ALDHC induces the constricted structure of the substrate tunnel, with the side chain of Asn478 imposing steric restrictions on branched-chain and aromatic aldehydes. Furthermore, a key glycine (Gly104) positioned at the mouth of the tunnel allows for maximum tunnel depth required to bind medium-chain to long-chain aldehydes. This study provides the first integrated biochemical and structural characterization of a box-pathway-encoded ALDH from any organism and offers insight into the catalytic role of ALDHC in benzoate degradation.  相似文献   

13.
14.
15.
16.
17.
Oxidation of cis-3,4-dehydroadipyl-CoA semialdehyde to cis-3,4-dehydroadipyl-CoA by the aldehyde dehydrogenase, ALDH(C) (EC.1.2.1.77), is an essential step in the metabolism of benzoate in Burkholderia xenovorans LB400. In a previous study, we established a structural blueprint for this novel group of ALDH enzymes. Here, we build significantly on this initial work and propose a detailed reaction mechanism for ALDH(C) based on comprehensive structural and functional investigations of active site residues. Kinetic analyses reveal essential roles for C296 as the nucleophile and E257 as the associated general base. Structural analyses of E257Q and C296A variants suggest a dynamic charge repulsion relationship between E257 and C296 that contributes to the inherent flexibility of E257 in the native enzyme, which is further regulated by E496 and E167. A proton relay network anchored by E496 and supported by E167 and K168 serves to reset E257 for the second catalytic step. We also propose that E167, which is unique to ALDH(C) and its homologs, serves a critical role in presenting the catalytic water to the newly reset E257 such that the enzyme can proceed with deacylation and product release. Collectively, the reaction mechanism proposed for ALDH(C) promotes a greater understanding of these novel ALDH enzymes, the ALDH super-family in general, and benzoate degradation in B. xenovorans LB400.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号