首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Over the past year extensive analyses of the accumulated data on the structural and functional organisation of the endomembrane system and vesicular trafficking in higher plants have shown it to be far more complex than previously anticipated. The availability of molecular tools combined with new opportunities to visualise endomembrane dynamics in vivo will allow better understanding of the fundamental processes underlying the complexity of endomembrane behaviour and vesicular trafficking.  相似文献   

3.
Several common themes have emerged from recent structural and functional studies of proteins involved in the formation of coated vesicles. For example, inositol polyphosphate lipid headgroups are bound specifically by a variety of different domains in ways appropriate to domain function. Another theme is the recognition of short sequence motifs in structureless regions of other coat components, allowing dynamic multicomponent networks to be established.  相似文献   

4.
TARPs and the AMPA receptor trafficking paradox   总被引:1,自引:0,他引:1  
Ziff EB 《Neuron》2007,53(5):627-633
AMPA receptors (AMPARs) conduct fast, excitatory currents that depolarize neurons and trigger action potentials. AMPARs took on new importance when it was shown that AMPAR transport can increase or decrease the number of AMPARs at synapses and give rise to synapse plasticity, including long-term potentiation (LTP) and long-term depression (LTD). This review considers how transmembrane AMPAR regulatory proteins (TARPs), a novel family of AMPAR auxiliary subunits, have changed our view of AMPAR transport and raised some perplexing questions.  相似文献   

5.
6.
Horton AC  Ehlers MD 《Neuron》2003,40(2):277-295
Among the most morphologically complex cells, neurons are masters of membrane specialization. Nowhere is this more striking than in the division of cellular labor between the axon and the dendrites. In morphology, signaling properties, cytoskeletal organization, and physiological function, axons and dendrites (or more properly, the somatodendritic compartment) are radically different. Such polarization of neurons into domains specialized for either receiving (dendrites) or transmitting (axons) cellular signals provides the underpinning for all neural circuitry. The initial specification of axonal and dendritic identity occurs early in neuronal life, persists for decades, and is manifested by the presence of very different sets of cell surface proteins. Yet, how neuronal polarity is established, how distinct axonal and somatodendritic domains are maintained, and how integral membrane proteins are directed to dendrites or accumulate in axons remain enduring and formidable questions in neuronal cell biology.  相似文献   

7.
Integrin trafficking and the control of cell migration   总被引:10,自引:1,他引:9  
In the late 1980s and early 1990s, the observation that certain integrin heterodimers are continually internalized from the plasma membrane into endosomal compartments and subsequently recycled back to the cell surface indicated that the endocytic and recycling pathways have the potential to exert minute-to-minute control over integrin function. This insight has prompted others to study the regulation of integrin trafficking in more detail. This review aims to summarize the findings of studies revealing the molecular mechanisms controlling integrin traffic, particularly those providing indications as to how these processes contribute to cell migration and tumour cell invasiveness.  相似文献   

8.
Zinc transporters and the cellular trafficking of zinc   总被引:1,自引:0,他引:1  
Zinc is an essential nutrient for all organisms because this metal serves as a catalytic or structural cofactor for many different proteins. Zinc-dependent proteins are found in the cytoplasm and within many organelles of the eukaryotic cell including the nucleus, the endoplasmic reticulum, Golgi, secretory vesicles, and mitochondria. Thus, cells require zinc transport mechanisms to allow cells to efficiently accumulate the metal ion and distribute it within the cell. Our current knowledge of these transport systems in eukaryotes is the focus of this review.  相似文献   

9.
V P Knutson 《FASEB journal》1991,5(8):2130-2138
The insulin receptor is a dynamic cellular macromolecule that moves through various compartments of the cell throughout its lifetime. This review addresses the processes involved in the synthetic assembly of the insulin receptor; the interaction of insulin with the receptor protein; the receptor-mediated endocytosis of insulin; and the role of receptor tyrosine and serine phosphorylation in both endocytosis and recycling. This discussion is concluded by examining the data available on the intracellular inactivation and degradation of the receptor protein. Emphasis is given to the cellular regulation imposed at each of these steps in receptor processing, and how the use of pharmacologic and physiologic perturbants has afforded experimental insights into the mechanisms the cell utilizes in modulating the expression and functioning of the insulin receptor.  相似文献   

10.
Newly discovered features of the trafficking of AMPA receptors to and from the postsynaptic membrane of excitatory synapses are now bringing the mechanisms of synaptic plasticity into focus. Recent advances, including the existence of slots, anchors, transport factors and pathways for activity-dependent control, have elucidated the role of the individual AMPA receptor subunits and their binding partners. The latest views describe how subunit type dictates the assembly of heteromeric receptors, and how these heteromers interact with the receptor trafficking machinery and synaptic anchorage factors. Moreover, phosphorylation may play an important role in receptor transport and synaptic turnover.  相似文献   

11.
12.
13.
Iron trafficking inside the brain   总被引:3,自引:0,他引:3  
Iron, an essential element for all cells of the body, including those of the brain, is transported bound to transferrin in the blood and the general extracellular fluid of the body. The demonstration of transferrin receptors on brain capillary endothelial cells (BCECs) more than 20 years ago provided the evidence for the now accepted view that the first step in blood to brain transport of iron is receptor-mediated endocytosis of transferrin. Subsequent steps are less clear. However, recent investigations which form the basis of this review have shed some light on them and also indicate possible fruitful avenues for future research. They provide new evidence on how iron is released from transferrin on the abluminal surface of BCECs, including the role of astrocytes in this process, how iron is transported in brain extracellular fluid, and how iron is taken up by neurons and glial cells. We propose that the divalent metal transporter 1 is not involved in iron transport through the BCECs. Instead, iron is probably released from transferrin on the abluminal surface of these cells by the action of citrate and ATP that are released by astrocytes, which form a very close relationship with BCECs. Complexes of iron with citrate and ATP can then circulate in brain extracellular fluid and may be taken up in these low-molecular weight forms by all types of brain cells or be bound by transferrin and taken up by cells which express transferrin receptors. Some iron most likely also circulates bound to transferrin, as neurons contain both transferrin receptors and divalent metal transporter 1 and can take up transferrin-bound iron. The most likely source for transferrin in the brain interstitium derives from diffusion from the ventricles. Neurons express the iron exporting carrier, ferroportin, which probably allows them to excrete unneeded iron. Astrocytes lack transferrin receptors. Their source of iron is probably that released from transferrin on the abluminal surface of BCECs. They probably to export iron by a mechanism involving a membrane-bound form of the ferroxidase, ceruloplasmin. Oligodendrocytes also lack transferrin receptors. They probably take up non-transferrin bound iron that gets incorporated in newly synthesized transferrin, which may play an important role for intracellular iron transport.  相似文献   

14.
15.
Intracellular trafficking in the trypanosomatids   总被引:1,自引:0,他引:1  
Trypanosomes are members of the kinetoplastida, a group of divergent protozoan parasites responsible for considerable morbidity and mortality worldwide. These organisms have highly complex life cycles requiring modification of their cell surface together with engagement of immune evasion systems to effect survival; both processes intimately involve the membrane trafficking system. The completion of three trypanosomatid and several additional protist genomes in the last few years is providing an exciting opportunity to evaluate, at the molecular level, the evolution and diversity of membrane trafficking across deep evolutionary time as well as to analyse in unprecedented detail the membrane trafficking systems of trypanosomes.  相似文献   

16.
Kostelansky MS  Sun J  Lee S  Kim J  Ghirlando R  Hierro A  Emr SD  Hurley JH 《Cell》2006,125(1):113-126
The endosomal sorting complex required for transport (ESCRT) complexes are central to receptor downregulation, lysosome biogenesis, and budding of HIV. The yeast ESCRT-I complex contains the Vps23, Vps28, and Vps37 proteins, and its assembly is directed by the C-terminal steadiness box of Vps23, the N-terminal half of Vps28, and the C-terminal half of Vps37. The crystal structures of a Vps23:Vps28 core subcomplex and the Vps23:Vps28:Vps37 core were solved at 2.1 and 2.8 A resolution. Each subunit contains a structurally similar pair of helices that form the core. The N-terminal domain of Vps28 has a hydrophobic binding site on its surface that is conformationally dynamic. The C-terminal domain of Vps28 binds the ESCRT-II complex. The structure shows how ESCRT-I is assembled by a compact core from which the Vps23 UEV domain, the Vps28 C domain, and other domains project to bind their partners.  相似文献   

17.
Localization and trafficking of aquaporin 2 in the kidney   总被引:2,自引:1,他引:1  
Aquaporins (AQPs) are membrane proteins serving in the transfer of water and small solutes across cellular membranes. AQPs play a variety of roles in the body such as urine formation, prevention from dehydration in covering epithelia, water handling in the blood-brain barrier, secretion, conditioning of the sensory system, cell motility and metastasis, formation of cell junctions, and fat metabolism. The kidney plays a central role in water homeostasis in the body. At least seven isoforms, namely AQP1, AQP2, AQP3, AQP4, AQP6, AQP7, and AQP11, are expressed. Among them, AQP2, the anti-diuretic hormone (ADH)-regulated water channel, plays a critical role in water reabsorption. AQP2 is expressed in principal cells of connecting tubules and collecting ducts, where it is stored in Rab11-positive storage vesicles in the basal state. Upon ADH stimulation, AQP2 is translocated to the apical plasma membrane, where it serves in the influx of water. The translocation process is regulated through the phosphorylation of AQP2 by protein kinase A. As soon as the stimulation is terminated, AQP2 is retrieved to early endosomes, and then transferred back to the Rab 11-positive storage compartment. Some AQP2 is secreted via multivesicular bodies into the urine as exosomes. Actin plays an important role in the intracellular trafficking of AQP2. Recent findings have shed light on the molecular basis that controls the trafficking of AQP2.  相似文献   

18.
19.
The retrograde membrane transport pathways from endosomes to the trans-Golgi network (TGN) are now recognized as critical intracellular pathways to recycle and shuttle a selective subgroup of membrane proteins, including sorting receptors, membrane-bound enzymes, transporters, as well as providing an avenue for the intracellular transport of various bacterial toxins. Multiple pathways from endosomes to the TGN have now been defined which differ between the cargo transported and the machinery used. Here, we review advances in these pathways and the requirement for TGN organization, and also discuss the development of unbiased analytical approaches to quantitatively track cargo that use these endosome-to-TGN pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号