首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
Dortet L  Mostowy S  Cossart P 《Autophagy》2012,8(1):132-134
Autophagy is a cell-autonomous mechanism of innate immunity that protects the cytosol against bacterial infection. Invasive bacteria, including Listeria monocytogenes, have thus evolved strategies to counteract a process that limits their intracellular growth. ActA is a surface protein produced by L. monocytogenes to polymerize actin and mediate intra- and intercellular movements, which plays a critical role in autophagy escape. We have recently investigated the role of another L. monocytogenes surface protein, the internalin InlK, in the infection process. We showed that in the cytosol of infected cells, InlK interacts with the Major Vault Protein (MVP), the main component of cytoplasmic ribonucleoprotein particles named vaults. Although MVP has been implicated in a variety of key cellular process, its role remains elusive. We demonstrated that L. monocytogenes is able, via InlK, to decorate its surface with MVP in order to escape autophagic recognition. Strikingly, this new strategy used by L. monocytogenes to avoid autophagy is independent of ActA, suggesting that InlK-MVP interactions and actin polymerization are two processes that favor in the same manner the infection process. Understanding the role of MVP may provide new insights into bacterial infection and autophagy.  相似文献   

2.
《Autophagy》2013,9(1):132-133
Autophagy is a cell-autonomous mechanism of innate immunity that protects the cytosol against bacterial infection. Invasive bacteria, including Listeria monocytogenes, have thus evolved strategies to counteract a process that limits their intracellular growth. ActA is a surface protein produced by L. monocytogenes to polymerize actin and mediate intra- and intercellular movements, which plays a critical role in autophagy escape. We have recently investigated the role of another L. monocytogenes surface protein, the internalin InlK, in the infection process. We showed that in the cytosol of infected cells, InlK interacts with the Major Vault Protein (MVP), the main component of cytoplasmic ribonucleoprotein particles named vaults. Although MVP has been implicated in a variety of key cellular process, its role remains elusive. We demonstrated that L. monocytogenes is able, via InlK, to decorate its surface with MVP in order to escape autophagic recognition. Strikingly, this new strategy used by L. monocytogenes to avoid autophagy is independent of ActA, suggesting that InlK-MVP interactions and actin polymerization are two processes that favor in the same manner the infection process. Understanding the role of MVP may provide new insights into bacterial infection and autophagy.  相似文献   

3.
Listeria monocytogenes is a human pathogen that employs a wide variety of virulence factors in order to adhere to, invade, and replicate within target cells. Internalins play key roles in processes ranging from adhesion to receptor recognition and are thus essential for infection. Recently, InlK, a surface-associated internalin, was shown to be involved in Listeria's ability to escape from autophagy by recruitment of the major vault protein (MVP) to the bacterial surface. Here, we report the structure of InlK, which harbors four domains arranged in the shape of a “bent arm”. The structure supports a role for the “elbow” of InlK in partner recognition, as well as of two Ig-like pedestals intercalated by hinge regions in the projection of InlK away from the surface of the bacterium. The unusual fold and flexibility of InlK could be essential for MVP binding and concealment from recognition by molecules involved in the autophagic process.  相似文献   

4.
Major vault protein (MVP) is the predominant member of a large cytosolic ribonucleoprotein particle, termed vault. We have previously shown that MVP derived from electric ray electric organ becomes phosphorylated by protein kinase C in vitro and by tyrosine kinase in vivo. Here we show that MVP from two mammalian cell lines (CHO and PC12 cell) becomes highly phosphorylated by endogenous protein kinases in cell-free systems. The susceptibility to protein kinases differs substantially from those observed in MVP derived from electric organ. Phosphorylation of MVP depends on the presence of Mg2+ and can be inhibited by the chelating agent EDTA. Inhibitors of casein kinase II attenuate the phosphorylation of MVP. In contrast to CHO cells, addition of recombinant casein kinase II enhances the phosphorylation of MVP in PC12 cells. Endogenous kinase activity is of particulate nature and copurifies with vault particles. Immuno-affinity purified vaults containing recombinant tagged MVP expressed in CHO cells reveal no autophosphorylation, suggesting that protein kinase activity is not an intrinsic property of vaults. Our results suggest that cell-specific phosphorylation of MVP may play a critical role in vault function.  相似文献   

5.
Huffman KE  Corey DR 《Biochemistry》2005,44(7):2253-2261
The human major vault protein (MVP) is the primary component of the 13 MDa vault complex. MVP has been implicated in the development of non-P-glycoprotein-mediated drug resistance in cancer cells. Here we present several lines of evidence that dispute this assertion. siRNAs capable of specifically and efficiently knocking down expression of MVP do not alter the ability of resistant cells to remove doxorubicin from the nucleus and do not increase sensitivity to the drug. Conversely, upregulation of MVP in chemosensitive cells does not confer increased drug resistance. In multi-drug resistant (MDR) lung carcinoma cells, fluorescence microscopy reveals that doxorubicin enters the nucleus and is then removed, inconsistent with suggestions that vaults either act to prevent the drug from entering the nucleus or are involved as a nuclear efflux pump. These data suggest that vaults play no direct role in the MDR phenotype in non-small cell lung carcinoma cells and that their cellular function remains unknown. These results also have important implications concerning the value of MVP as a drug target and as a prognostic marker for chemotherapy failure. Our results suggest the need for further investigation into the link between upregulation of vaults and malignancy, the mechanism behind non-P-gp-mediated drug resistance, and the role of vaults in human cells.  相似文献   

6.
The vault is a highly conserved ribonucleoprotein particle found in all higher eukaryotes. It has a barrel-shaped structure and is composed of the major vault protein (MVP); vault poly(ADP-ribose) polymerase (VPARP); telomerase-associated protein 1 (TEP1); and small untranslated RNA (vRNA). Although its strong conservation and high abundance indicate an important cellular role, the function of the vault is unknown. In humans, vaults have been implicated in multidrug resistance during chemotherapy. Recently, assembly of recombinant vaults has been established in insect cells expressing only MVP. Here, we demonstrate that co-expression of MVP with one or both of the other two vault proteins results in their co-assembly into regularly shaped vaults. Particles assembled from MVP with N-terminal peptide tags of various length are compared. Cryoelectron microscopy (cryoEM) and single-particle image reconstruction methods were used to determine the structure of nine recombinant vaults of various composition, as well as wild-type and TEP1-deficient mouse vaults. Recombinant vaults with MVP N-terminal peptide tags showed internal density that varied in size with the length of the tag. Reconstruction of a recombinant vault with a cysteine-rich tag revealed 48-fold rotational symmetry for the vault. A model is proposed for the organization of MVP within the vault with all of the MVP N termini interacting non-covalently at the vault midsection and 48 copies of MVP forming each half vault. CryoEM difference mapping localized VPARP to three density bands lining the inner surface of the vault. Difference maps designed to localize TEP1 showed only weak density inside of the caps, suggesting that TEP1 may interact with MVP via a small interaction region. In the absence of atomic-resolution structures for either VPARP or TEP1, fold recognition methods were applied. A total of 21 repeats were predicted for the TEP1 WD-repeat domain, suggesting an unusually large beta-propeller fold.  相似文献   

7.
Induction of efficient adaptive T cell-mediated immunity against the intracellular bacterium Listeria monocytogenes requires its successful invasion of host cell cytosol. However, it is not clear whether its cytosolic escape and growth are sufficient to induce T cell-mediated clearance and protection upon secondary infection. To investigate this issue, we have searched for mutants that do not induce long-term protective immunity yet invade the cytosol of infected cells. We found that mice immunized with L. monocytogenes lacking the SecA2 ATPase, an auxiliary protein secretion system present in several Gram-positive pathogenic bacteria, mounted a robust cytolytic IFN-gamma-secreting CD8+ T cell response but were not protected against a secondary challenge with wild-type (wt) bacteria. Furthermore, CD8+ T cells from mice immunized with secA2- bacteria failed to transfer protection when injected into recipient mice demonstrating that they were unable to confer protection. Also, secA2- and wt L. monocytogenes spread to the same myeloid-derived cell types in vivo and SecA2 deficiency does not interfere with intracytosolic bacteria multiplication. Therefore, cytosol invasion is not sufficient for inducing secondary protective responses and induction of memory CD8+ T cells mediating long-term antibacterial protective immunity is dependent upon SecA2 expression inside the cytosol of host cells in vivo.  相似文献   

8.
Listeria monocytogenes is an intracellular bacterial pathogen that causes life-threatening disease. The mechanisms used by L. monocytogenes to invade non-professional phagocytic cells are not fully understood. In addition to the requirement of bacterial determinants, host cell conditions profoundly influence infection. Here, we have shown that inhibition of the RhoA/ROCK pathway by pharmacological inhibitors or RNA interference results in increased L. monocytogenes invasion of murine fibroblasts and hepatocytes. InlF, a member of the internalin multigene family with no known function, was identified as a L. monocytogenes -specific factor mediating increased host cell binding and entry. Conversely, activation of RhoA/ROCK activity resulted in decreased L. monocytogenes adhesion and invasion. Furthermore, virulence of wild-type bacteria during infection of mice was significantly increased upon inhibition of ROCK activity, whereas colonization and virulence of an inlF deletion mutant was not affected, thus supporting a role for InlF as a functional virulence determinant in vivo under specific conditions. In addition, inhibition of ROCK activity in human-derived cells enhanced either bacterial adhesion or adhesion and entry in an InlF-independent manner, further suggesting a host species or cell type-specific role for InlF and that additional bacterial determinants are involved in mediating ROCK-regulated invasion of human cells.  相似文献   

9.
The hly-encoded listeriolysin O (LLO) is a major virulence factor secreted by the intracellular pathogen Listeria monocytogenes, which plays a crucial role in the escape of bacteria from the phagosomal compartment. Here, we identify a putative PEST sequence close to the N-terminus of LLO and focus on the role of this motif in the biological activities of LLO. Two LLO variants were constructed: a deletion mutant protein, lacking the 19 residues comprising this sequence (residues 32-50), and a recombinant protein of wild-type size, in which all the P, E, S or T residues within this motif have been substituted. The two mutant proteins were fully haemolytic and were secreted in culture supernatants of L. monocytogenes in quantities comparable with that of the wild-type protein. Strikingly, both mutants failed to restore virulence to a hly-negative strain in vivo. In vitro assays showed that L. monocytogenes expressing the LLO deletion mutant was strongly impaired in its ability to escape from the phagosomal vacuole and, subsequently, to divide in the cytosol of infected cells. This work reveals for the first time that the N-terminal portion of LLO plays an important role in the development of the infectious process of L. monocytogenes.  相似文献   

10.
Vaults are 13 million Da ribonucleoprotein particles with a highly conserved structure. Expression and assembly by multimerization of an estimated 96 copies of a single protein, termed the major vault protein (MVP), is sufficient to form the minimal structure and entire exterior shell of the barrel-shaped vault particle. Multiple copies of two additional proteins, VPARP and TEP1, and a small untranslated vault RNA are also associated with vaults. We used the Sf9 insect cell expression system to form MVP-only recombinant vaults and performed a series of protein-mixing experiments to test whether this particle shell is able to exclude exogenous proteins from interacting with the vault interior. Surprisingly, we found that VPARP and TEP1 are able to incorporate into vaults even after the formation of the MVP vault particle shell is complete. Electrospray molecular mobility analysis and spectroscopic studies of vault-interacting proteins were used to confirm this result. Our results demonstrate that the protein shell of the recombinant vault particle is a dynamic structure and suggest a possible mechanism for in vivo assembly of vault-interacting proteins into preformed vaults. Finally, this study suggests that the vault interior may functionally interact with the cellular milieu.  相似文献   

11.
Vaults are ribonucleoproteins that may function in intracellular transport processes. We investigated the intracellular distribution and dynamics of vaults in non-small cell lung cancer cells in which vaults are labeled with the green fluorescent protein. Immunofluorescence experiments showed that vaults are dispersed throughout the cytoplasm; a small fraction is found in close proximity to microtubules. Immunoprecipitation experiments corroborated these results showing co-precipitation of MVP and beta-tubulin. Using quantitative fluorescence-recovery after photobleaching (FRAP), we demonstrated that vault mobility over longer distances in part depends on intact microtubules; vaults moving slower when microtubules are depolymerized by nocodazole. Biochemical fractionation indicated a small fraction of MVP associated with the nucleus, however, no GFP-tagged vaults could be observed inside the nucleus. We observed an accumulation of vaults at the nuclear envelope upon treatment of cells with the protein synthesis inhibitor cycloheximide. Analysis of nucleo-cytoplasmic transport using a fluorescent substrate containing a classical NLS and NES expressed in MVP+/+ and MVP-/- mouse embryonic fibroblasts indicated no differences in nuclear import/export kinetics, suggesting no role for vaults in these processes. We hypothesize that a subset of vaults moves directionally via microtubules, possibly towards the nucleus.  相似文献   

12.
The cellular vaults have been described for the first time in 1986 as ribonucleoprotein complexes composed of three proteins, MVP, TEP1 and vPARP and several vRNA strains. Biochemical and structural studies revealed their ubiquitous existence in the cytoplasm of many eukaryotic cells and their barrel-like structure indicating their engagement in the intracellular transport. Furthermore, the high homology between MVP and LRP which was already known to be involved in multidrug resistance mechanism opened a discussion about the role of vaults in both normal and cancer cells. The histopathology research demonstrated an increased amount of MVP/LRP proteins in the cancer as well as showed translocation possibility between cytoplasm and nuclear envelope, which can be of crucial point in the prevention of nucleus against anticancer drugs.  相似文献   

13.
Being an opportunistic bacterial pathogen, Listeria monocytogenes demonstrates significant strain variations in virulence and pathogenicity. The availability of laboratory procedures to ascertain the pathogenic potential of L. monocytogenes bacteria would greatly enhance the control and prevention of listerial infections. As a method that measures all virulent determinants, mouse virulence assay has been frequently used for assessing L. monocytogenes virulence. The pathogenic potential of a given L. monocytogenes strain as determined by mouse virulence assay is often calculated from mouse mortality data in combination with colony forming units (CFUs) derived from plate counts, and expressed by medium lethal dose (LD(50)). In this report, we describe an alternative method [i.e., relative virulence (%)] that does not involve CFU estimation, and is comparable to LD(50) for interpretation of mouse virulence assay for L. monocytogenes. The relative virulence (%) is obtained by dividing the number of dead mice with the total number of mice tested for a particular strain using a known virulent strain (e.g., L. monocytogenes EGD) as reference. Besides providing a more direct interpretation in comparison with LD(50) values for mouse virulence assay, this method requires fewer dosage groups per L. monocytogenes strain, and eliminates CFU estimation that is step subject to variations between runs and also between laboratories.  相似文献   

14.
Vaults are the largest (13 megadalton) cytoplasmic ribonucleoprotein particles known to exist in eukaryotic cells. They have a unique barrel-shaped structure with 8-fold symmetry. Although the precise function of vaults is unknown, their wide distribution and highly conserved morphology in eukaryotes suggests that their function is essential and that their structure must be important for their function. The 100-kDa major vault protein (MVP) constitutes approximately 75% of the particle mass and is predicted to form the central barrel portion of the vault. To gain insight into the mechanisms for vault assembly, we have expressed rat MVP in the Sf9 insect cell line using a baculovirus vector. Our results show that the expression of the rat MVP alone can direct the formation of particles that have biochemical characteristics similar to endogenous rat vaults and display the distinct vault-like morphology when negatively stained and examined by electron microscopy. These particles are the first example of a single protein polymerizing into a non-spherically, non-cylindrically symmetrical structure. Understanding vault assembly will enable us to design agents that disrupt vault formation and hence aid in elucidating vault function in vivo.  相似文献   

15.
16.
The Mr 110,000 lung resistance-related protein (LRP), also termed the major vault protein (MVP), constitutes >70% of subcellular ribonucleoprotein particles called vaults. Overexpression of LRP/MVP and vaults has been linked directly to MDR in cancer cells. Clinically, LRP/MVP expression can be of value to predict response to chemotherapy and prognosis. Monoclonal antibodies (MAbs) against LRP/MVP have played a critical role in determining the relevance of this protein in clinical drug resistance. We compared the applicability of the previously described MAbs LRP-56, LMR-5, LRP, 1027, 1032, and newly isolated MAbs MVP-9, MVP-16, MVP-18, and MVP-37 for the immunodetection of LRP/MVP by immunoblotting analysis and by immunocyto- and histochemistry. The availability of a broader panel of reagents for the specific and sensitive immunodetection of LRP/MVP should greatly facilitate biological and clinical studies of vault-related MDR.  相似文献   

17.
Within the group of Listeria sp., only L. monocytogenes is pathogenic for humans and numerous studies of L. monocytogenes strains have described non-virulent isolates. In this study, the potential value of two tissue culture assays (TCA) was analysed to ascertain the virulence properties of L. monocytogenes strains, initially typed for virulence using the immunocompromised mouse model (ICMM). The first assay assessed both the penetration into, and multiplication within, Caco-2 cells (PM assay); the second was a plaque-forming assay (PF assay). All the clinical isolates (nine strains) were virulent in both TCA. Conversely, all the non-pathogenic species (seven strains) were non-virulent in PM and PF assays. Compared with the virulence obtained in the ICMM with 29 Listeria strains, including 12 non-virulent L. monocytogenes strains, the sensitivity of both TCA was equal to 1. Specificity was 0·89 and 0·84 for the PF and PM assays, respectively. However, a study of strains exhibiting virulence differences in three other in vivo virulence models showed that ICMM only detected highly virulent strains. The specificity of the PF test could, therefore, be higher, and close to that obtained by the enumeration of viable bacteria in the spleen of mice infected by subcutaneous injection in the footpad and by intravenous injection. Taken together, this study confirms the existence of low-virulence L. monocytogenes strains and shows that the virulence status of some non-clinical L. monocytogenes isolates depends on the virulence models used. The data suggest that the PF assay could be used as a primary test to evaluate the virulence of Listeria strains in order to reduce the cost of testing all strains in vivo .  相似文献   

18.
The major vault protein (MVP) is the predominant member of a large ribonucleoprotein particle, named vault. Vaults are abundant in the cytosol of mammalian cells. Mammalian MVP has previously been reported to be associated with the nucleus, particularly its cytosolic surface on which vaults are thought to dock at or near the nuclear pore complex. To date the presence of vault particles inside the nucleus has been convincingly reported only for sea urchin cells. We have addressed the potential nuclear localization of MVP in mammalian cells by employing confocal laser microscopy and cryo-immunoelectron microscopy. As revealed by immunostaining and by analysis of cells transfected with a construct encoding MVP and green fluorescent protein, MVP is present in both the cytosol and in the nucleus. Cryo-electron microscopy of human astroglioma U373 cells reveals clusters of immunogold particles at nuclear pores and in the nucleoplasm suggesting that nuclear MVP is associated with particulate structures. Quantification of the fluorescence observed in the cytosol and in the nuclei reveals that about 5% of the MVP in U373 cells is localized inside the nucleus. Our results further support the notion that part of the cellular MVP can enter the nucleus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号