首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract:  A convertible glasshouse was established to study annual transgenic plants under near-field environmental conditions while simultaneously ensuring a high level of biological containment. This system can provide a useful step in the assessment of transgenic plants prior to open-field experiments. Two transgenic wheat lines (cv. Bobwhite) were investigated and compared with their corresponding non-transformed wildtypes with respect to plant performance, expression of the transgenic trait and interactions with antagonists. The first line expressed snowdrop lectin [ Galanthus nivalis agglutinin (GNA)] for enhanced resistance to aphids, and the second one overexpressed the endogenous Lr10 gene to enhance resistance to leaf rust. Interestingly, 1000-kernel weight of Lr10 -transgenic plants was significantly reduced, indicating that the overexpression of the Lr10 gene caused a significant fitness cost for the plant. GNA-transgenic plants expressed the lectin at levels too low to affect the target aphids. A detached leaf bioassay with Lr10 -transgenic plants revealed an increased resistance to leaf rust. No differences in the performance of aphids or cereal leaf beetles on transgenic and non-transformed plants were recorded in the convertible glasshouse and in complementary glasshouse studies. Similarly, infection levels with powdery mildew did not differ between transgenic and non-transformed plants but Bobwhite plants were significantly more infected when compared with conventional Swiss spring wheat cultivars. Overall, the assessment revealed that for the plants investigated here, their genetic background had a stronger impact on the performance of a plant and its interactions with insect herbivores and pathogens than the expression of the transgene.  相似文献   

2.
In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici) and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM) mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew) became more favourable for another pest (aphids).  相似文献   

3.
Kalinina O  Zeller SL  Schmid B 《PloS one》2011,6(11):e28091
Genetically modified (GM) plants offer an ideal model system to study the influence of single genes that confer constitutive resistance to pathogens on the ecological behaviour of plants. We used phytometers to study competitive interactions between GM lines of spring wheat Triticum aestivum carrying such genes and control lines. We hypothesized that competitive performance of GM lines would be reduced due to enhanced transgene expression under pathogen levels typically encountered in the field. The transgenes pm3b from wheat (resistance against powdery mildew Blumeria graminis) or chitinase and glucanase genes from barley (resistance against fungi in general) were introduced with the ubiquitin promoter from maize (pm3b and chitinase genes) or the actin promoter from rice (glucanase gene). Phytometers of 15 transgenic and non-transgenic wheat lines were transplanted as seedlings into plots sown with the same 15 lines as competitive environments and subject to two soil nutrient levels. Pm3b lines had reduced mildew incidence compared with control lines. Chitinase and chitinase/glucanase lines showed the same high resistance to mildew as their control in low-nutrient treatment and slightly lower mildew rates than the control in high-nutrient environment. Pm3b lines were weaker competitors than control lines. This resulted in reduced yield and seed number. The Pm3b line with the highest transgene expression had 53.2% lower yield than the control whereas the Pm3b line which segregated in resistance and had higher mildew rates showed only minor costs under competition. The line expressing both chitinase and glucanase genes also showed reduced yield and seed number under competition compared with its control. Our results suggest that single transgenes conferring constitutive resistance to pathogens can have ecological costs and can weaken plant competitiveness even in the presence of the pathogen. The magnitude of these costs appears related to the degree of expression of the transgenes.  相似文献   

4.

Background

The introduction of transgenes into plants may cause unintended phenotypic effects which could have an impact on the plant itself and the environment. Little is published in the scientific literature about the interrelation of environmental factors and possible unintended effects in genetically modified (GM) plants.

Methods and Findings

We studied transgenic bread wheat Triticum aestivum lines expressing the wheat Pm3b gene against the fungus powdery mildew Blumeria graminis f.sp. tritici. Four independent offspring pairs, each consisting of a GM line and its corresponding non-GM control line, were grown under different soil nutrient conditions and with and without fungicide treatment in the glasshouse. Furthermore, we performed a field experiment with a similar design to validate our glasshouse results.The transgene increased the resistance to powdery mildew in all environments. However, GM plants reacted sensitive to fungicide spraying in the glasshouse. Without fungicide treatment, in the glasshouse GM lines had increased vegetative biomass and seed number and a twofold yield compared with control lines. In the field these results were reversed. Fertilization generally increased GM/control differences in the glasshouse but not in the field. Two of four GM lines showed up to 56% yield reduction and a 40-fold increase of infection with ergot disease Claviceps purpurea compared with their control lines in the field experiment; one GM line was very similar to its control.

Conclusions

Our results demonstrate that, depending on the insertion event, a particular transgene can have large effects on the entire phenotype of a plant and that these effects can sometimes be reversed when plants are moved from the glasshouse to the field. However, it remains unclear which mechanisms underlie these effects and how they may affect concepts in molecular plant breeding and plant evolutionary ecology.  相似文献   

5.
Aims Many resistance genes against fungal pathogens show costs of resistance. Genetically modified (GM) plants that differ in only one or a few resistance genes from control plants present ideal systems for measuring these costs in the absence of pathogens.Methods To assess the ecological relevance of costs of pathogen resistance, we grew individual plants of four transgenic spring wheat lines in a field trial with three pathogen levels and varied the genetic diversity of the crop.Important findings We found that two lines with a Pm3b transgene were more resistant to powdery mildew than their sister lines of the variety Bobwhite, whereas lines with chitinase (A9) or chitinase and glucanase (A13) transgenes were not more resistant than their mother variety Frisal. Nevertheless, in the absence of the pathogen, both the GM lines of Bobwhite as well as those of Frisal performed significantly worse than their controls, i.e. Pm3b #1 and Pm3b #2 had 39% or 53% and A9 and A13 had 14% or 23% lower yields. In the presence of the pathogen, all GM lines except Pm3b #2 could increase their yields and other fitness-related traits, reaching the performance levels of the control lines. Line Pm3b #2 seemed to have lost its phenotypic plasticity and had low performance in all environments. This may have been caused by very high transgene expression. No synergistic effects of mixing different GM lines with each other were detected. This might have been due to high transgene expression or the similarity between the lines regarding their resistance genes. We conclude that costs of resistance can be high for transgenic plants with constitutive transgene expression and that this can occur even in cases where the non-transgenic control lines are already relatively resistant, such as in our variety Frisal. Transgenic plants could only compete with conventional varieties in environments with high pathogen pressure. Furthermore, the large variability among the GM lines, which may be due to unpredictable transgene expression, suggests that case-by-case assessments are necessary to evaluate costs of resistance.  相似文献   

6.
Plant diseases are a serious threat to crop production. The informed use of naturally occurring disease resistance in plant breeding can greatly contribute to sustainably reduce yield losses caused by plant pathogens. The TaLr34res gene encodes an ABC transporter protein and confers partial, durable, and broad spectrum resistance against several fungal pathogens in wheat. Transgenic barley lines expressing TaLr34res showed enhanced resistance against powdery mildew and leaf rust of barley. While TaLr34res is only active at adult stage in wheat, TaLr34res was found to be highly expressed already at the seedling stage in transgenic barley resulting in severe negative effects on growth. Here, we expressed TaLr34res under the control of the pathogen‐inducible HvGer4c promoter in barley. Sixteen independent barley transformants showed strong resistance against leaf rust and powdery mildew. Infection assays and growth parameter measurements were performed under standard glasshouse and near‐field conditions using a convertible glasshouse. Two HvGer4c::Ta‐Lr34res transgenic events were analysed in detail. Plants of one transformation event had similar grain production compared to wild‐type under glasshouse and near‐field conditions. Our results showed that negative effects caused by constitutive high expression of TaLr34res driven by the endogenous wheat promoter in barley can be eliminated by inducible expression without compromising disease resistance. These data demonstrate that TaLr34res is agronomically useful in barley. We conclude that the generation of a large number of transformants in different barley cultivars followed by early field testing will allow identifying barley lines suitable for breeding.  相似文献   

7.
Three cDNAs encoding the antifungal protein Ag-AFP from the fungus Aspergillus giganteus, a barley class II chitinase and a barley type I RIP, all regulated by the constitutive Ubiquitin1 promoter from maize, were expressed in transgenic wheat. In 17 wheat lines, stable integration and inheritance of one of the three transgenes has been demonstrated over four generations. The formation of powdery mildew (Erysiphe graminis f. sp. tritici) or leaf rust (Puccinia recondita f. sp. tritici) colonies was significantly reduced on leaves from afp or chitinase II- but not from rip I-expressing wheat lines compared with non-transgenic controls. The increased resistance of afp and chitinase II lines was dependent on the dose of fungal spores used for inoculation. Heterologous expression of the fungal afp gene and the barley chitinase II gene in wheat demonstrated that colony formation and, thereby, spreading of two important biotrophic fungal diseases is inhibited approximately 40 to 50% at an inoculum density of 80 to 100 spores per cm2.  相似文献   

8.
小麦近缘种属来源的抗白粉病基因是培育小麦抗病品种,防治白粉病危害的最重要基因来源。Pm57是位于西尔斯山羊草2S^s#l染色体长臂上的一个外源基因,对小麦白粉病具有苗期和成株期广谱抗性。为了创制Pm57白粉病抗性丧失突变体,利用基于基因突变体的植物抗病基因克隆新兴技术分离Pm57基因,选用0.625%的甲基磺酸乙酯(EMS)对1万粒小麦-西尔斯山羊草Pm57易位系89(5)69种子进行了诱变处理,M1大田密播种植,收获了1598个M2可育株系。初步对其中300个M2株系进行苗期白粉病抗性接种鉴定,并利用2个Pm57基因特异分子标记X2L4g9P4/HaeⅢ和X284274及小麦全国区试品系DUS测试所用的42对SSR核心引物对Pm57抗性丧失突变体进行鉴定,筛选出来自27个M2株系的真实抗性丧失突变体70个,Pm57基因抗性丧失突变体频率达到9.0%。本研究所获得的白粉病抗性丧失突变体为Pm57基因的后续克隆与抗白粉病分子机理研究提供了重要的材料基础。  相似文献   

9.
Resistance (R) genes protect plants very effectively from disease, but many of them are rapidly overcome when present in widely grown cultivars. To overcome this lack of durability, strategies that increase host resistance diversity have been proposed. Among them is the use of multilines composed of near-isogenic lines (NILs) containing different disease resistance genes. In contrast to classical R-gene introgression by recurrent backcrossing, a transgenic approach allows the development of lines with identical genetic background, differing only in a single R gene. We have used alleles of the resistance locus Pm3 in wheat, conferring race-specific resistance to wheat powdery mildew (Blumeria graminis f. sp. tritici), to develop transgenic wheat lines overexpressing Pm3a, Pm3c, Pm3d, Pm3f or Pm3g. In field experiments, all tested transgenic lines were significantly more resistant than their respective nontransformed sister lines. The resistance level of the transgenic Pm3 lines was determined mainly by the frequency of virulence to the particular Pm3 allele in the powdery mildew population, Pm3 expression levels and most likely also allele-specific properties. We created six two-way multilines by mixing seeds of the parental line Bobwhite and transgenic Pm3a, Pm3b and Pm3d lines. The Pm3 multilines were more resistant than their components when tested in the field. This demonstrates that the difference in a single R gene is sufficient to cause host-diversity effects and that multilines of transgenic Pm3 wheat lines represent a promising strategy for an effective and sustainable use of Pm3 alleles.  相似文献   

10.

Key message

The combined effects of enhanced total transgene expression level and allele-specificity combination in transgenic allele-pyramided Pm3 wheat lines result in improved powdery mildew field resistance without negative pleiotropic effects.

Abstract

Allelic Pm3 resistance genes of wheat confer race-specific resistance to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) and encode nucleotide-binding domain, leucine-rich repeat (NLR) receptors. Transgenic wheat lines overexpressing alleles Pm3a, b, c, d, f, and g have previously been generated by transformation of cultivar Bobwhite and tested in field trials, revealing varying degrees of powdery mildew resistance conferred by the transgenes. Here, we tested four transgenic lines each carrying two pyramided Pm3 alleles, which were generated by crossbreeding of lines transformed with single Pm3 alleles. All four allele-pyramided lines showed strongly improved powdery mildew resistance in the field compared to their parental lines. The improved resistance results from the two effects of enhanced total transgene expression levels and allele-specificity combinations. In contrast to leaf segment tests on greenhouse-grown seedlings, no allelic suppression was observed in the field. Plant development and yield scores of the pyramided lines were similar to the mean scores of the corresponding parental lines, and thus, the allele pyramiding did not cause any negative effects. On the contrary, in pyramided line, Pm3b × Pm3f normal plant development was restored compared to the delayed development and reduced seed set of parental line Pm3f. Allele-specific RT qPCR revealed additive transgene expression levels of the two Pm3 alleles in the pyramided lines. A positive correlation between total transgene expression level and powdery mildew field resistance was observed. In summary, allele pyramiding of Pm3 transgenes proved to be successful in enhancing powdery mildew field resistance.
  相似文献   

11.
选用来自我国不同地区的20个白粉病菌毒性菌株,对54个CIMMYT小麦品种(系)进行抗病性分析.结果表明:(1)34个品种(系)含有抗病基因,以Pm8基因出现频率最高,有15个品种(系)携带该基因;(2)参试主效基因中,Pm1、Pm3e、Pm5、Pm6和Pm7基因已丧失对我国白粉菌的抗性,Pm16和Pm20基因的抗性最强;(3)50个1B/1R易位系品种(系)中31个含有抗病基因,48%的抗病1B/1R易位系可检测到Pm8基因.根据田间成株期病程曲线下面积(AUDPC)聚类分析结果,可将54份材料分为高抗、中抗、中感和高感4类,7个品种(系)不含任何主效抗病基因而田间表现中到高的抗性,是典型慢病性品种.  相似文献   

12.
白粉病和黄矮病是小麦生产上的重要病害,近几年来这两种病害经常在我国一些小麦产区同时发生。为解决该问题,本研究通过杂交、回交方法将抗黄矮病的Bdv2基因(源自于YW642)和抗白粉病的Pm21基因(源自于CB037)聚合在一起,育成了兼抗黄矮病和白粉病的小麦新材料。通过田间抗病性鉴定与分子标记辅助选择相结合,得到聚合了Bdv2基因和Pm21基因的BC1代小麦22株,F2代小麦51株。农艺性状调查显示,这些含Pm21和Bdv2基因的双抗白粉病和黄矮病小麦新材料的农艺性状优于感病植株和原先的亲本,可以在小麦白粉病和黄矮病兼性抗病育种中作为优异种质资源加以利用。  相似文献   

13.
Twelve Polish spring wheat cultivars and 18 spring wheat accessions from CIMMYT, Mexico, were examined for resistance to a highly pathogenic Fusarium culmorum strain KF846 and powdery mildew in 5-year field experiments. Resistant wheat cultivars (Sumai 3 and Frontana) served as controls. The mean percentage of Fusarium-damaged kernels (% FDK) for 5 years was lower in CIMMYT accessions (16.7%) than in Polish spring cultivars (28.3%). In all Polish spring cultivars, % FDK was higher than in the control cultivars Sumai 3 and Frontana (12-20%). The mean disease score (on a scale of 1-9) for powdery mildew (natural infection) for all examined cultivars and lines ranged from 0 to 7 and in the Polish spring cultivars was significantly lower (0-5). Cultivars Eta, Henika, Ismena, Jasna and Olimpia were found to be the least susceptible to powdery mildew in field experiments. The laboratory host-pathogen tests with Blumeria graminis f. sp. tritici isolates showed that only two cultivars were characterized by identical resistance patterns as the standard differential lines with documented resistance genes. Cultivar Alkora had the gene Pm3d, and Henika had Pm5. The gene Pm3d was identified in cultivars Jasna and Eta in combination with another unknown gene/genes. Cultivars Santa and Torka had the gene Pm5 in combination with another unknown gene/genes. Four cultivars: Banti, Ismena, Olimpia and Sigma, showed resistance to all mildew isolates employed in a laboratory test. The accession IPG-SW-14 was the least susceptible to both pathogens (F. culmorum and powdery mildew) in all 5 years of experiments. This line is the best candidate for deriving new cultivars with improved resistance to fungal diseases.  相似文献   

14.
The barley Mla locus encodes 28 characterized resistance specificities to the biotrophic fungal pathogen barley powdery mildew. We describe a single-cell transient expression assay using entire cosmid DNAs to pinpoint Mla1 within the complex 240-kb Mla locus. The MLA1 cDNA encodes a 108-kD protein containing an N-terminal coiled-coil structure, a central nucleotide binding domain, and a C-terminal leucine-rich repeat region; it also contains a second short open reading frame at the 5' end that has a possible regulatory function. Although most Mla-encoded resistance specificities require Rar1 for their function, we used the single-cell expression system to demonstrate that Mla1 triggers full resistance in the presence of the severely defective rar1-2 mutant allele. Wheat contains an ortholog of barley Mla, designated TaMla, that is tightly linked to (0.7 centimorgan) but distinct from a tested resistance specificity at the complex Pm3 locus to wheat powdery mildew. Thus, the most polymorphic powdery mildew resistance loci in barley and wheat may have evolved in parallel at two closely linked homeoloci. Barley Mla1 expressed in wheat using the single-cell transformation system failed to trigger a response to any of the wheat powdery mildew Avr genes tested, indicating that AvrMla1 is not genetically fixed in wheat mildew strains.  相似文献   

15.
一些小麦白粉病抗源抗性基因鉴定分析   总被引:8,自引:2,他引:6  
研究鉴定了我国37份小麦白粉病抗源的抗性基因,19份材料不具有任何抗性基因;6份材料具有来自1BL/1RS易位系的抗性基因Pm8;5份材料具有抗性基因Pm5a;3份分别具有对目前欧洲所有生理小种均抗的抗性基因Pm21、Pm16和Pm12;4份材料具有新的抗性基因。  相似文献   

16.
The powdery mildew resistance gene Pm8 derived from rye is located on a 1BL.1RS chromosome translocation in wheat. However, some wheat lines with this translocation do not show resistance to isolates of the wheat powdery mildew pathogen avirulent to Pm8 due to an unknown genetically dominant suppression mechanism. Here we show that lines with suppressed Pm8 activity contain an intact and expressed Pm8 gene. Therefore, the absence of Pm8 function in certain 1BL.1RS‐containing wheat lines is not the result of gene loss or mutation but is based on suppression. The wheat gene Pm3, an ortholog of rye Pm8, suppressed Pm8‐mediated powdery mildew resistance in lines containing Pm8 in a transient single‐cell expression assay. This result was further confirmed in transgenic lines with combined Pm8 and Pm3 transgenes. Expression analysis revealed that suppression is not the result of gene silencing, either in wheat 1BL.1RS translocation lines carrying Pm8 or in transgenic genotypes with both Pm8 and Pm3 alleles. In addition, a similar abundance of the PM8 and PM3 proteins in single or double homozygous transgenic lines suggested that a post‐translational mechanism is involved in suppression of Pm8. Co‐expression of Pm8 and Pm3 genes in Nicotiana benthamiana leaves followed by co‐immunoprecipitation analysis showed that the two proteins interact. Therefore, the formation of a heteromeric protein complex might result in inefficient or absent signal transmission for the defense reaction. These data provide a molecular explanation for the suppression of resistance genes in certain genetic backgrounds and suggest ways to circumvent it in future plant breeding.  相似文献   

17.
In 1996 and 1997 a field survey of the abundance and species composition of cereal aphid primary and secondary parasitoids in spring barley, winter wheat and durum wheat was conducted in Zealand, Denmark. The purpose was to create a better understanding of the mechanisms underlying aphid–parasitoid dynamics in the field. Such an understanding can be used when developing biological control methods in cereals. In both years aphid attacks in cereals began in late June and never exceeded the economic threshold. In 1996 the first aphids were found in wheat on 26 June; in 1997 the first aphids were found on 24 June on both crops. The highest densities reached in 1996 were an average of six aphids per shoot in winter wheat and one aphid per shoot in spring barley. In 1997 the highest densities reached were 11 aphids per shoot in winter wheat and four aphids per shoot in spring barley. The aphid population collapsed by the end of July to early August in 1996, but it collapsed by mid-July in 1997. The onset and peak of parasitization were delayed in comparison to aphid infestation. Parasitism was 20–60% by the end of the cropping season in spring barley, and 30–80% in winter wheat and durum wheat in 1996. In 1997 parasitism did not exceed 3–11% in barley and was less than 2% in one winter wheat field but more than 40% in the other winter wheat field sampled. In both years most parasitism was due to Aphidiidae (Hymenoptera). The two dominant species were Aphidius ervi Haliday and Aphidius rhopalosiphi De Stefani-Perez. Hyperparasitism began after primary parasitism and increased progressively during the cropping season. The two years were similar in many respects, including for species composition of aphids and parasitoids. The late start of the aphid infestation may have contributed to the high level of parasitization found in 1996, but in 1997 the aphid infestation period was so short that a parasitoid population did not have time to build up.  相似文献   

18.
Fourteen Bacillus thuringiensis isolates having both insecticidal activity and in vitro antifungal activity were selected and tested for in vivo antifungal activity against tomato late blight, wheat leaf rust, tomato gray mold, and barley powdery mildew in growth chambers. All the isolates represented more than 70% disease control efficacy against at least one of four plant diseases. Specifically, 12 isolates exhibited strong control activity against barley powdery mildew. Under glasshouse conditions, four (50-02, 52-08, 52-16, and 52- 18) of the isolates also displayed potent control efficacy against cucumber powdery mildew. To our knowledge, this is the first report of B. thuringiensis isolates that have disease control efficacy against powdery mildew of barley and cucumber as well as insecticidal activity.  相似文献   

19.
The occurrence and distribution of seedling resistance genes and the presence of adult plant resistance to powdery mildew, was investigated in a collection of 155 Nordic bread wheat landraces and cultivars by inoculation with 11 powdery mildew isolates. Eighty-nine accessions were susceptible in the seedling stage, while 66 accessions showed some resistance. Comparisons of response patterns allowed postulation of combinations of genes Pm1a, Pm2, Pm4b, Pm5, Pm6, Pm8 and Pm9 in 21 lines. Seedling resistance was three times more frequent in spring wheat than in winter wheat. The most commonly postulated genes were Pm1a+Pm2+Pm9 in Sweden, Pm5 in Denmark and Norway, and Pm4b in Finland. Forty-five accessions were postulated to carry only unidentified genes or a combination of identified and unidentified genes that could not be resolved by the 11 isolates. Complete resistance to all 11 isolates was present in 18 cultivars. Adult plant resistance was assessed for 109 accessions after natural infection with a mixture of races. In all, 92% of the accessions developed less than 3-5% pathogen coverage while nine lines showed 10-15% infected leaf surface. The characterization of powdery mildew resistance in Nordic wheat germplasm could facilitate the combination of resistance genes in plant breeding programmes to promote durability of resistance and disease management.  相似文献   

20.
Powdery mildew is a major fungal disease in wheat growing areas worldwide. A novel source of resistance to wheat powdery mildew present in the germplasm line NC97BGTD7 was genetically characterized as a monogenic trait in greenhouse and field trials using F2 derived lines from a NC97BGTD7 X Saluda cross. Microsatellite markers were used to map and tag this resistance gene, now designated Pm34. Three co-dominant microsatellite markers linked to Pm34 were identified and their most likely order was established as: Xbarc177-5D, 5.4cM, Pm34, 2.6cM, Xbarc144-5D, 14cM, Xgwm272-5D. These microsatellite markers were previously mapped to the long arm of the 5D chromosome and their positions were confirmed using Chinese Spring nullitetrasomic Nulli5D-tetra5A and ditelosomic Dt5DL lines. Pm2, the only other known Pm gene on chromosome 5D, has been mapped to the short arm and its specificity is different from that of Pm34.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号