首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Diapause, an alternative developmental pathway characterized by changes in developmental timing and metabolism, is coordinated by molecular mechanisms that are not completely understood. MicroRNA (miRNA) mediated gene silencing is emerging as a key component of animal development and may have a significant role in initiating, maintaining, and terminating insect diapause. In the present study, we test this possibility by using high-throughput sequencing and qRT-PCR to discover diapause-related shifts in miRNA abundance in the flesh fly, Sarcophaga bullata. We identified ten evolutionarily conserved miRNAs that were differentially expressed in diapausing pupae compared to their nondiapausing counterparts. miR-289-5p and miR-1-3p were overexpressed in diapausing pupae and may be responsible for silencing expression of candidate genes during diapause. miR-9c-5p, miR-13b-3p, miR-31a-5p, miR-92b-3p, miR-275-3p, miR-276a-3p, miR-277-3p, and miR-305-5p were underexpressed in diapausing pupae and may contribute to increased expression of heat shock proteins and other factors necessary for the enhanced environmental stress-response that is a feature of diapause. In S. bullata, a maternal effect blocks the programming of diapause in progeny of females that have experienced pupal diapause, and in this study we report that several miRNAs, including miR-263a-5p, miR-100-5p, miR-125-5p, and let-7-5p were significantly overexpressed in such nondiapausing flies and may prevent entry into diapause. Together these miRNAs appear to be integral to the molecular processes that mediate entry into diapause.  相似文献   

3.
Air pollution exposure has been increasing extensively and there are evidence suggesting that exposure to air pollution during pregnancy can lead to congenital defects in the offspring. Recent findings suggested that microRNAs (miRNAs) might play important roles in the pathogenesis of developmental defects. However, the miRNAs profile pattern in the air pollution-exposed embryos remains unknown. RNA sequencing was performed to determine the differentially expressed miRNAs in the rat embryos (gestation day 9) with or without air pollution exposure. The potential functions and the associated mechanisms of these differentially expressed miRNAs were determined using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analyses. The regulatory networks of mRNA–miRNA interactions were also reconstructed. As compared with the control group, a total of 291 miRNAs were differentially expressed in the rat embryos from the air pollution-exposed group, in which 204 and 87 miRNAs were significantly downregulated and upregulated, respectively. These miRNAs were predicted to deregulate mitotic spindle organization, cellular respiration, glycolate metabolism, and proteasome. Extensive regulation of target genes by miR-346, miR-504, miR-214-3p and miR-1224 was also predicted. Our results suggested that miRNAs may play crucial roles in the pathogenesis of air pollution-induced congenital spinal defects through deregulating multiple biological processes.  相似文献   

4.
5.
6.
Currently, microRNAs (miRNAs) are known to regulate cellular processes such as apoptosis, differentiation, cell cycle, and immune functions, and their expression can be altered by distinct stress conditions, such as oxidative stress. In immune systems of fish, vitamin E (VE) has a defined role as an antioxidant. In order to understand the molecular mechanism of vitamin E defending from oxidative stress, three groups of juvenile Nile tilapia (Oreochromis niloticus) (initial weight 3.25 ± 0.02 g) were fed to satiation with 3 semi-purified diets containing VE (dl-α-tocopherol acetate) of 0, 50, and 2500 mg/kg supplementation, respectively, with the expressions of eight miRNAs (miR-21, miR-223, miR-146a, miR-125b, miR-181a, miR-16, miR-155 and miR-122) in the liver of tilapia subsequently detected after 8-week growth experiment. Results showed that VE-deficient (0 mg/kg supplementation) decreased the activity of superoxide dismutase (SOD), and decreased the expressions of miR-223, miR-146a, miR-16 and miR-122, while excessive supplementation of VE (2500 mg/kg) decreased SOD activity and increased the expressions of all the eight miRNAs. The targets of the eight miRNAs were further predicated with bioinformatic approach and the possible regulating mechanisms of VE via miRNAs were analyzed. The present study confirmed that the differences in dietary VE affected expression of hepatic miRNAs which may partly demonstrate the molecular mechanism of VE, and the new idea of introducing miRNAs into research will provide the basic data for researches of molecular nutrition.  相似文献   

7.
To comprehend the events during developmental biology, fundamental knowledge about the basic machinery of regulation is a prerequisite. MicroRNA (miRNAs) act as regulators in most of the biological processes and recently, it has been concluded that miRNAs can act as modulatory factors even during developmental process from lower to higher animal. Zebrafish, because of its favorable attributes like tiny size, transparent embryo, and rapid external embryonic development, has gained a preferable status among all other available experimental animal models. Currently, zebrafish is being utilized for experimental studies related to stem cells, regenerative molecular medicine as well drug discovery. Therefore, it is important to understand precisely about the various miRNAs that controls developmental biology of this vertebrate model. In here, we have discussed about the miRNA-controlled zebrafish developmental stages with a special emphasis on different miRNA families such as miR-430, miR-200, and miR-133. Moreover, we have also reviewed the role of various miRNAs during embryonic and vascular development stages of zebrafish. In addition, efforts have been made to summarize the involvement of miRNAs in the development of different body parts such as the brain, eye, heart, muscle, and fin, etc. In each section, we have tried to fulfill the gaps of zebrafish developmental biology with the help of available knowledge of miRNA research. We hope that precise knowledge about the miRNA-regulated developmental stages of zebrafish may further help the researchers to efficiently utilize this vertebrate model for experimental purpose.  相似文献   

8.
Environmental exposure to inorganic arsenic compounds has been reported to have serious health effects on humans. Recent studies reported that arsenic targets endothelial cells lining blood vessels, and endothelial cell activation or dysfunction, may underlie the pathogenesis of arsenic-induced diseases and developmental toxicity. It has been reported that microRNAs (miRNAs) may act as an angiogenic switch by regulating related genes. The present study was designed to test the hypothesis that arsenite-regulated miRNAs play pivotal roles in arsenic-induced toxicity. Fertilized eggs were injected via the yolk sac with 100 nM sodium arsenite at Hamburger-Hamilton (HH) stages 6, 9, and 12, and harvested at HH stage 18. To identify the individual miRNAs and mRNAs that may regulate the genetic network, the expression profiles of chick embryos were analyzed by microarray analysis. Microarray analyses revealed that the expression of a set of miRNAs changed after arsenite administration, especially miRNA-9, 181b, 124, 10b, and 125b, which exhibited a massive decrease in expression. Integrative analyses of the microarray data revealed that several miRNAs, including miR-9 and miR-181b, might target several key genes involved in arsenic-induced developmental toxicity. A luciferase reporter assay confirmed neuropilin-1 (Nrp1) as a target of mir-9 and mir-181b. Data from the transwell migration assay and the tube-formation assay indicated that miR-9 and mir-181b inhibited the arsenic-induced EA.hy926 cell migration and tube formation by targeting NRP1. Our study demonstrates that the environmental toxin, sodium arsenite, induced angiogenesis by altering the expression of miRNAs and their cognate mRNA targets.  相似文献   

9.
胃癌是人类最常见的肿瘤之一,其发病机制尚不完全清楚.微小RNA(microRNA,miRNA)是一组最近发现的长度为22个核苷酸左右的非编码RNA,具有负性调控基因表达的功能.本文对miRNA在胃癌发生中的作用及其表达调控机制进行综述.不断有文献显示,miRNA在多种肿瘤(包括胃癌)的发生过程中发挥着重要作用.作者和其他研究人员发现,miRNA的表达异常(如:miR-421和miR-21的上调或/和miR-31和miR-218的下调等)与胃癌的发生相关,提示miRNA是胃癌发生的重要因素.目前,miRNA表达的分子机制尚未完全明了.最近研究较清楚地显示,miRNA的表达受到DNA甲基化和组蛋白修饰等机制的调控.这说明,胃癌相关miRNA的表达水平受到表观遗传机制的调控。  相似文献   

10.
Placental deficiencies are related to the developmental abnormalities of transgenic cattle produced by somatic cell nuclear transfer, but the concrete molecular mechanism is not very clear. Studies have shown that placental development can be regulated by microRNAs (miRNAs) in normal pregnancy. Thus, this study screened differentially expressed miRNAs by the next-generation sequencing technology to reveal the relationship between miRNAs expression and aberrant development of placentae produced by the transgenic-clone technology. Expressions of miRNAs and mRNAs in different placentae were compared, the placentae derived from one natural pregnancy counterpart (PNC), one natural pregnancy of a cloned offspring as a mother (PCM), and two transgenic (human beta-defensin-3) cloned pregnancy: one offspring was alive after birth (POL) and the other offspring was dead in 2 days after birth (POD). Further, signaling pathway analysis was conducted. The results indicated that 694 miRNAs were differentially expressed in four placental samples, such as miR-210, miR-155, miR-21, miR-128, miR-183, and miR-145. Signaling pathway analysis revealed that compared with PNC, significantly upregulated pathways in POL, POD, and PCM mainly included focal adhesion, extracellular matrix–receptor interaction, pathways in cancer, regulation of actin cytoskeleton, endosytosis, and adherens junction, and significantly downregulated pathways mainly included malaria, nucleotide binding oligomerization domain-like receptor signaling, cytokine–cytokine receptor interaction, Jak–STAT signaling pathway. In conclusion, this study confirmed alterations of the expression profile of miRNAs and signaling pathways in placentae from transgenic (hBD-3) cloned cattle (PTCC), which could lead to the morphologic and histologic deficiencies of PTCC. This information would be useful for the relative research in future.  相似文献   

11.
Microcystins (MC), the potent inhibitor of protein phosphatase 1 and 2A, are hepatotoxins of increasing importance due to its high acute toxicity and potent tumor promoting activity. So far, the exact mechanisms of MC-induced hepatotoxicity and tumor promoting activity have not been fully elucidated. To better understand the mechanisms underlying microcystin-RR (MC-RR) induced toxicity as well as provide the possibility for the establishment of biomarkers for MC-RR exposure, differential proteome analysis on human amnion FL cells treated by MC-RR was carried out using two-dimensional gel electrophoresis (2-DE) followed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Image analysis of silver-stained 2-dimensional gels revealed that 89 proteins showed significant differential expression in MC-RR treated cells compared with control, and 8 proteins were unique to MC-RR treated cells and 8 proteins were only detected in control cells. Sixty-six proteins were further identified with high confidence by peptide mass fingerprinting. Some of the identified differentially expressed proteins have clearly relationship with the process of apoptosis, signal transduction, and cytoskeleton alteration which are consistent with the literature. The functional implications of alterations in the levels of these proteins were discussed. However, most of which have not been reported previously to be involved in cellular processes responded to MC-RR. Therefore, this work will provide new insight into the mechanism of MC-RR toxicity.  相似文献   

12.
13.
14.
15.
Recent work has revealed the causative links between deregulation of microRNAs (miRNAs) and cancer development. In hepatocellular carcinoma (HCC), aberrant expression of miRNAs has been observed, but the molecular mechanisms that contribute to such changes remains to be elucidated. Here, we reported the analysis of miRNA expression in 94 pairs of tumor and adjacent nontumor tissues from HBV-associated HCC in Chinese patients. We found miRNAs were aberrantly expressed in HCC tissues. To investigate the cause of such deregulation, we detected changes in DNA copy number by measuring locus-specific hybridization intensity, and found changes in expression of several miRNAs are correlated with genomic amplification or deletion. For example, the genomic regions of miR-30d and miR-151 were amplified in ~50% of HCC tumor tissues, and the expressions of these miRNAs are significantly correlated with DNA copy number. We also employed cDNA microarray data, and provide evidence that key regulators of the miRNA biosynthetic pathway, including DROSHA, DGCR8, AGO1, and AGO2, are frequently overexpressed in HCC. This study provides molecular clues that may contribute to the global changes of miRNA expression in HCC.  相似文献   

16.
MicroRNAs (miRNAs) have been recognized as significantly involved in prostate cancer (PCa). Since androgen receptor (AR) plays a central role in PCa carcinogenesis and progression, it is imperative to systematically elucidate the causal association between AR and miRNAs, focusing on the molecular mechanisms by which miRNAs mediate AR signalling. In this study, we performed a series of time-course microarrays to observe the dynamic genome-wide expressions of mRNAs and miRNAs in parallel in hormone-sensitive prostate cancer LNCaP cells stimulated by androgen. Accordingly, we introduced Response Score to identify AR target miRNAs, as well as Modulation Score to identify miRNA target mRNAs. Based on theoretical identification and experimental validation, novel mechanisms addressing cell viability in PCa were unravelled for 3 miRNAs newly recognized as AR targets. (1) miR-19a is directly up-regulated by AR, and represses SUZ12, RAB13, SC4MOL, PSAP and ABCA1, respectively. (2) miR-27a is directly up-regulated by AR, and represses ABCA1 and PDS5B. (3) miR-133b is directly up-regulated by AR, and represses CDC2L5, PTPRK, RB1CC1, and CPNE3, respectively. Moreover, we found miR-133b is essential to PCa cell survival. Our study gives certain clues on miRNAs mediated AR signalling to cell viability by influencing critical pathways, especially by breaking through androgen’s growth restriction effect on normal prostate tissue.  相似文献   

17.
Altered expression of miRNAs is associated with development and progression of various human cancers by regulating the translation of oncogenes and tumor suppressor genes. In colorectal cancer, these regulators complement the Vogelstein multistep model of pathogenesis and have the potential of becoming a novel class of tumor biomarkers and therapeutic targets. Using quantitative real-time PCR, we measured the expression of 621 mature miRNAs in 40 colorectal cancers and their paired normal tissues and identified 23 significantly deregulated miRNAs. We subsequently evaluated their association with clinical characteristics of the samples and presence of alterations in the molecular markers of colorectal cancer progression. Expression levels of miR-31 were correlated with CA19-9 and miR-18a, miR-21, and miR-31 were associated with mutations in APC gene. To investigate the downstream regulation of the differentially expressed miRNAs identified, we integrated putative mRNA target predictions with the results of a meta-analysis of seven public gene expression datasets of normal and tumor samples of colorectal cancer patients. Many of the colorectal cancer deregulated miRNAs computationally mapped to targets involved in pathways related to progression. Here one promising candidate pair (miR-1 and MET) was studied and functionally validated. We show that miR-1 can have a tumor suppressor function in colorectal cancer by directly downregulating MET oncogene both at RNA and protein level and that reexpression of miR-1 leads to MET-driven reduction of cell proliferation and motility, identifying the miR-1 downmodulation as one of the events that could enhance colorectal cancer progression.  相似文献   

18.
microRNAs (miRNAs) play a critical role in implantation and development of mouse embryos. In this study, we aim to evaluate the possibility of miRNAs as potential biomarkers in the blastocyst culture to assess embryo quality. We also intend to investigate whether improved clinical outcomes of vitrified embryos agree with altered miRNA expressions. Mouse embryos from in vitro fertilization were vitrified at the two-cell stage. After thawing, the embryos were individually cultured and developed to the blastocyst stage. We used quantitative real-time polymerase chain reaction to evaluate miRNA expression levels in both vitrified and fresh groups, and culture medium (CM). The fibronectin binding assay was performed to examine for blastocyst attachment. The findings showed reduced expressions of miR-16-1 (0.2 ± 0.06) and miR-Let-7a (0.65 ± 0.1) after vitrification compared to fresh embryos. We observed significant upregulation of the target genes Vav3 (4.33 ± 0.25), integrin β-3 (Itg β3; 4.73 ± 0.2), and Bcl2 (2.29 ± 0.16) in the vitrified embryos compared to the fresh groups. Evaluation of blastocyst CM showed upregulation of miR-Let-7a (15.68 ± 0.89), miR-16-1 (16.18 ± 0.75), and miR-15a (13.36 ± 0.73) in the vitrified group in comparison to the fresh blastocysts (P < .05). The expression levels of miR-16-1 (3.28 ± 0.63), miR-15a (5.91 ± 0.38), and miR-Let-7a (9.07 ± 0.6) in CM of the vitrified blastocysts conducted on fibronectin were significantly higher than the fresh group (P < .05).This study showed that vitrification of embryos changes implantation and proliferation biomarkers. In addition, upregulated miRNAs in CM could be potentially used for noninvasive early assessment of embryo quality.  相似文献   

19.
20.
目的:研究三氯乙烯(TCE)对斑马鱼胚胎心脏发育的毒性作用及其机制,为寻找干预靶点提供实验依据。方法:斑马鱼胚胎来自于国家斑马鱼资源中心,分为DMSO组(对照组)、DMSO+CHIR组、DMSO+XAV组、TCE处理组、TCE+CHIR组和TCE+XAV组(TCE设置为1、10、100 ppb三个不同的浓度;DMSO:二甲基亚砜;CHIR:CHIR-99021,Wnt信号通路激活剂;XAV:XAV-939,Wnt信号通路抑制剂),每组60条。斑马鱼胚胎饲养于系统养殖水中,恒温28℃,每隔24 h更换养殖水,并分别加入相应药物。连续培养72 h,收集斑马鱼胚胎的心脏组织,提取RNA进行转录组芯片分析,并以荧光定量PCR验证Wnt信号通路相关基因的表达。结果:与对照组相比,三氯乙烯暴露导致斑马鱼心脏畸形显著增加,以心房心室比例异常、环化不全以及心包水肿等为主要表型。芯片分析结果显示,TCE处理组Wnt信号通路相关基因(Axin2、Sox9b、Nkx2.5)表达受到显著影响。qPCR结果进一步验证,TCE处理组与DMSO对照组相比,Wnt通路靶基因Axin2、Sox9b及Nkx2.5的mRNA水平显著下调(P<0.05),提示Wnt信号通路被抑制。Wnt激活剂CHIR降低TCE导致的斑马鱼胚胎心脏发育异常,而添加Wnt通路抑制剂XAV后,斑马鱼胚胎心脏畸形率显著增加(P<0.05)。结论:三氯乙烯暴露导致斑马鱼胚胎心脏畸形,Wnt信号通路参与三氯乙烯的心脏发育毒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号