首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(1) The kinetics of the reduction by duroquinol of the prosthetic groups of QH2: cytochrome c oxidoreductase and of the formation of ubisemiquinone have been studied using a combination of the freeze-quench technique, low-temperature diffuse-reflectance spectroscopy, EPR and stopped flow. (2) The formation of the antimycin-sensitive ubisemiquinone anion parallels the reduction of both high-potential and low-potential cytochrome b-562. (3) The rates of reduction of both the [2Fe-2S] clusters and cytochromes (c + c1) are pH dependent. There is, however, a pH-dependent discrepancy between their rate of reduction, which can be correlated with the difference in pH dependencies of their midpoint potentials. (4) Lowering the pH or the Q content results in a slower reduction of part of the [2Fe-2S] clusters. It is suggested that one cluster is reduced by a quinol/semiquinone couple and the other by a semiquinone/quinone couple. (5) Myxothiazol inhibits the reduction of the [2Fe-2S] clusters, cytochrome c1 and high-potential cytochrome b-562. (6) The results are consistent with a Q-cycle model describing the pathway of electrons through a dimeric QH2: cytochrome c oxidoreductase.  相似文献   

2.
The kinetic behaviour of the prosthetic groups and the semiquinones in in QH2:cytochrome c oxidoreductase has been studied using a combination of the freeze-quench technique, low-temperature diffuse-reflectance spectroscopy, EPR and stopped flow. (2) In the absence of antimycin, cytochrome b-562 is reduced in two phases separated by a lag time. The initial very rapid reduction phase, that coincides with the formation of the antimycin-sensitive Qin, is ascribed to high-potential cytochrome b-562 and the slow phase to low-potential cytochrome b-562. the two cytochromes are present in a 1:1 molar ratio. The lag time between the two reduction phases decreases with increasing pH. Both the [2 Fe-2S] clusters and cytochrome c1 are reduced monophasically under these conditions, but at a rate lower than that of the initial rapid reduction of cytochrome b-562. (3) In the presence of antimycin and absence of oxidant, cytochrome b-562 is still reduced biphasically, but there is no lag between the two phases. No Qin is formed and both the Fe-S clusters and cytochrome c1 are reduced biphasically, one-half being reduced at the same rate as in the absence of antimycin and the other half 10-times slower. (4) In the presence of antimycin and oxidant, the recently described antimycin-insensitive species of semiquinone anion, Qout (De Vries, S., Albracht, S.P.J., Berden, J.A. and Slater, E.C. (1982) J. Biol. Chem. 256, 11996-11998) is formed at the same rate as that of the reduction of all species of cytochrome b. In this case cytochrome b is reduced in a single phase. (5) The reversible change of the line shape of the EPR spectrum of the [2Fe-2S] cluster 1 is caused by ubiquinone bound in the vicinity of this cluster. (6) The experimental results are consistent with the basic principles of the Q cycle. Because of the multiplicity, stoicheiometry and heterogeneous kinetics of the prosthetic groups, a Q cycle model describing the pathway of electrons through a dimeric QH2:cytochrome c oxidoreductase is proposed.  相似文献   

3.
1. The EPR signal in the g = 2 region of the reduced QH2: cytochrome c oxidoreductase as present in submitochondrial particles and the isolated enzyme is an overlap of two signals in a 1 : 1 weighted ratio. Both signals are due to [2Fe-2S]+1 centers. 2. From the signal intensity it is computed that the concentration of each Fe-S center is half that of cytochrome c1. 3. The line shape of one of the Fe-S centers, defined as center 1, is reversibly dependent on the redox state of the b-c1 complex. The change of the line shape cannot be correlated with changes of the redox state of any of the cytochromes in QH2: cytochrome c oxidoreductase. 4. Lie the optical spectrum, the EPR spectrum of the cytochromes is composed of the absorption of at least three different b cytochromes and cytochrome c1. 5. The molar ratio of the prosthetic groups was found to be c1 : b-562 : b-566 : b-558 : center 1 : center 2 = 2 : 2 : 1 : 1 : 1 : 1. The consequences of this stoichiometry are discussed in relation to the basic enzymic unit of QH2 : cytochrome c oxidoreductase.  相似文献   

4.
The pre-steady-state kinetics of the reduction of the prosthetic groups of QH2:cytochrome c oxidoreductase in bovine heart submitochondrial particles were studied in relation to the kinetics of the Q-10 reduction, using duroquinol as substrate. The prosthetic groups, including semiquinone, were measured with EPR and low-temperature-diffuse reflectance spectroscopy, the samples being prepared with the rapid-freeze quench technique. For the determination of the redox state of ubiquinone in the pre-steady state the rapid chemical quench technique was used as an extension of the rapid-freeze quench technique, and Q-10 and QH2-10 were measured with reversed-phase HPLC after extraction with petroleum ether. Ubiquinone was reduced biphasically, 8% of total Q-10 (equal to 1 mol Q-10/mol cytochrome c1), being reduced within 5 ms, and the rest, the Q-pool, at a much lower rate. The initial rapid reduction of this special Q-10 was accompanied by rapid formation of Qi and rapid reduction of a large part of the cytochrome b-562. Both semiquinone formation and reduction of b-562 showed transient kinetics due to a contribution of the reaction pathway via centre o when the iron-sulphur cluster and cytochrome c1 were oxidised. The majority of the special quinol was located at centre i, probably bound, but also at centre o some bound quinol was formed. This was visible when antimycin was present, the antimycin-insensitive bound quinol being totally sensitive to myxothiazol. Myxothiazol alone accelerated the reduction of the Q-pool via centre i, but also the equilibration of cytochrome b-562 with the Q-pool. Antimycin drastically lowered the rate of reduction of the Q-pool and additionally seemed to block the rapid electron transfer from part of the Rieske iron-sulphur cluster to cytochrome c1. It is concluded that, during the pre-steady-state, cytochrome b-562 is not in equilibrium with the Q-pool and that the rate of equilibration is probably determined by the rate of dissociation of the special bound quinol from centre i.  相似文献   

5.
(1) The kinetic behaviour of the prosthetic groups and the semiquinones in QH2:cytochrome c oxidoreductase has been studied using a combination of the freeze-quench technique, low-temperature diffuse-reflectance spectroscopy, EPR and stopped flow. (2) In the absence of antimycin, cytochrome b-562 is reduced in two phases separated by a lag time. The initial very rapid reduction phase, that coincides with the formation of the antimycin-sensitive Q?in, is ascribed to high-potential cytochrome b-562 and the slow phase to low-potential cytochrome b-562. The two cytochromes are present in a 1:1 molar ratio. The lag time between the two reduction phases decreases with increasing pH. Both the [2 Fe-2 S] clusters and cytochrome c1 are reduced monophasically under these conditions, but at a rate lower than that of the initial rapid reduction of cytochrome b-562. (3) In the presence of antimycin and absence of oxidant, cytochrome b-562 is still reduced biphasically, but there is no lag between the two phases. No Q?in is formed and both the Fe-S clusters and cytochrome c1 are reduced biphasically, one-half being reduced at the same rate as in the absence of antimycin and the other half 10-times slower. (4) In the presence of antimycin and oxidant, the recently described antimycin-insensitive species of semiquinone anion, Q?out (De Vries, S., Albracht, S.P.J., Berden, J.A. and Slater, E.C. (1982) J. Biol. Chem. 256, 11996–11998) is formed at the same rate as that of the reduction of all species of cytochrome b. In this case cytochrome b is reduced in a single phase. (5) The reversible change of the line shape of the EPR spectrum of the [2Fe-2S] cluster 1 is caused by ubiquinone bound in the vicinity of this cluster. (6) The experimental results are consistent with the basic principles of the Q cycle. Because of the multiplicity, stoicheiometry and heterogeneous kinetics of the prosthetic groups, a Q cycle model describing the pathway of electrons through a dimeric QH2:cytochrome c oxidoreductase is proposed.  相似文献   

6.
Using a combination of EPR and low temperature diffuse reflectance spectroscopy, a new species of semiquinone anion has been detected in QH2:cytochrome c oxidoreductase in submitochondrial particles under conditions of oxidant-induced extra reduction of cytochrome b. In contrast to the previously detected semiquinone anion, this new species is insensitive to antimycin but sensitive to treatment with 2,3-dimercaptopropanol and O2. The two species can easily be distinguished on the basis of their respective EPR properties since they differ in g-value, line width, and microwave power saturation behavior. It is concluded that the two species of semiquinone anion are bound to different domains on QH2:cytochrome c oxidoreductase. The existence of two different semiquinone anions in the enzyme strongly supports a mechanism of electron flow as proposed in the Q-cycle.  相似文献   

7.
The antimycin-sensitive ubisemiquinone radical (QC) of the ubiquinol-cytochrome c oxidoreductase of submitochondrial particles and chromatophores of Rhodopseudomonas sphaeroides Ga has been studied by a combination of redox potentiometry and EPR spectroscopy. This g = 2.005 radical signal appears at physiological pH values and increases in intensity with increasing pH up to pH 7.6 in submitochondrial particles and pH 9.0 in R. sphaeroides after which its intensity remains unchanged. The Em7 (ubiquinone/quinol) of the signal, estimated from redox titration data is 80 mV for submitochondrial particles, and 150 mV in chromatophores. Each of these values is higher than that of the quinone pool by 20 mV in submitochondrial particles and 60 mV in R. sphaeroides. This indicates that the quinone at the binding site is out of equilibrium with the pool, and that binding site preferentially binds quinol over quinone. Analysis of the shapes of the semiquinone titration curves, taken together with the midpoint elevation, indicates a quinone-binding site: cytochrome c1 stoichiometry of 1:1 in both submitochondrial particles and chromatophores. At its maximal intensity, the semiquinone concentration at the binding site is 0.26 in submitochondrial particles (greater than pH 7.6) and 0.4 in chromatophores (greater than pH 9.0). In both systems, the midpoint of the ubiquinone/ubisemiquinone couple is constant as the pH is raised up to the pH of maximal semiquinone formation whereafter it becomes more negative at the rate of -60 mV/pH unit. The midpoint of the ubisemiquinone/quinol couple, on the other hand, varies by -120 mV/pH unit at pH values up to the transition pH, after which it, too, changes by -60 mV/pH unit. This seemingly anomalous behavior may be explained by invoking a protonated group at or near the quinone-binding site whose pK corresponds to the pH transition point in the quinone/semiquinone/quinol redox chemistry when the site is free or when quinone or quinol occupies the site. This pK is elevated to at least pH 9.0 in submitochondrial particles and 10.5 in R. sphaeroides when semiquinone is bound to the site.  相似文献   

8.
Hybrid-cluster proteins ('prismane proteins') have previously been isolated and characterized from strictly anaerobic sulfate-reducing bacteria. These proteins contain two types of Fe/S clusters unique in biological systems: a [4Fe-4S] cubane cluster with spin-admixed S = 3/2 ground-state paramagnetism and a novel type of hybrid [4Fe-2S-2O] cluster, which can attain four redox states. Genomic sequencing reveals that genes encoding putative hybrid-cluster proteins are present in a range of bacterial and archaeal species. In this paper we describe the isolation and spectroscopic characterization of the hybrid-cluster protein from Escherichia coli. EPR spectroscopy shows the presence of a hybrid cluster in the E. coli protein with characteristics similar to those in the proteins of anaerobic sulfate reducers. EPR spectra of the reduced E. coli hybrid-cluster protein, however, give evidence for the presence of a [2Fe-2S] cluster instead of a [4Fe-4S] cluster. The hcp gene encoding the hybrid-cluster protein in E. coli and other facultative anaerobes occurs, in contrast with hcp genes in obligate anaerobic bacteria and archaea, in a small operon with a gene encoding a putative NADH oxidoreductase. This NADH oxidoreductase was also isolated and shown to contain FAD and a [2Fe-2S] cluster as cofactors. It catalysed the reduction of the hybrid-cluster protein with NADH as an electron donor. Midpoint potentials (25 degrees C, pH 7.5) for the Fe/S clusters in both proteins indicate that electrons derived from the oxidation of NADH (Em NADH/NAD+ couple: -320 mV) are transferred along the [2Fe-2S] cluster of the NADH oxidoreductase (Em = -220 mV) and the [2Fe-2S] cluster of the hybrid-cluster protein (Em = -35 mV) to the hybrid cluster (Em = -50, +85 and +365 mV for the three redox transitions). The physiological function of the hybrid-cluster protein has not yet been elucidated. The protein is only detected in the facultative anaerobes E. coli and Morganella morganii after cultivation under anaerobic conditions in the presence of nitrate or nitrite, suggesting a role in nitrate-and/or nitrite respiration.  相似文献   

9.
Cytochrome b-561 of the ubiquinol-cytochrome c2 oxidoreductase complex of Rhodopseudomonas sphaeroides is reduced after flash illumination in the presence of myxothiazol in an antimycin-sensitive reaction. Flash-induced reduction was observed over the redox range in which cytochrome b-561 and the Q-pool are both oxidized before the flash. The extent of reduction increased with increasing pH, and was maximal at pH greater than 10.0 where the extent approached that observed in the presence of antimycin following a group of flashes. Reduction of cytochrome b-561 in the presence of myxothiazol showed a lag of approximately 1 ms after the flash, followed by reduction with t 1/2 approximately 6 ms; by analogy with the similar kinetics of the quinol oxidase site, we suggest that the rate is determined by collision with the QH2 produced in the pool on flash excitation.  相似文献   

10.
Diphenylamine (DPA), a known inhibitor of polyene and isoprene biosynthesis, is shown to inhibit flash-activatable electron transfer in photosynthetic membranes of Rhodobacter capsulatus. DPA is specific to the QO site of ubihydroquinone:cytochrome c oxidoreductase, where it inhibits not only reduction of the [2Fe-2S]2+ cluster in the FeS subunit and subsequent cytochrome c reduction but also heme bL reduction in the cytochrome b subunit. In both cases, the kinetic inhibition constant (Ki) is 25 +/- 10 microM. A novel aspect of the mode of action of DPA is that complete inhibition is established without disturbing the interaction between the reduced [2Fe-2S]+ cluster and the QO site ubiquinone complement, as observed from the electron paramagnetic resonance (EPR) spectral line shape of the reduced [2Fe-2S] cluster, which remained characteristic of two ubiquinones being present. These observations imply that DPA is behaving as a noncompetitive inhibitor of the QO site. Nevertheless, at higher concentrations (>10 mM), DPA can interfere with the QO site ubiquinone occupancy, leading to a [2Fe-2S] cluster EPR spectrum characteristic of the presence of only one ubiquinone in the QO site. Evidently, DPA can displace the more weakly bound of the two ubiquinones in the site, but this is not requisite for its inhibiting action.  相似文献   

11.
G. Unden  S.P.J. Albracht  A. Krger 《BBA》1984,767(3):460-469
The isolated menaquinol: fumarate oxidoreductase (fumarate reductase complex) from Vibrio succinogenes was investigated with respect to the redox potentials and the kinetic response of the prosthetic groups. The following results were obtained. (1) The redox state of the components was measured as a function of the redox potential established by the fumarate/succinate couple, after freezing of the samples (173 K). From these measurements, the midpoint potential of the [2Fe-2S] cluster (−59 mV), the [4Fe-4S] cluster (−24 mV) and the flavin/flavosemiquinone couple (about −20 mV) was obtained. (2) Potentiometric titration of the enzyme in the presence of electron-mediating chemicals gave, after freezing, apparent midpoint potentials that were 30–100 mV more negative than those found with the fumarate/succinate couple. (3) The rate constants of reduction of the components on the addition of succinate or 2,3-dimethyl-1,4-naphthoquinol were as great as or greater than the corresponding turnover numbers of the enzyme in quinone reduction by succinate or fumarate reduction by the quinol. In the oxidation of the reduced enzyme by fumarate, cytochrome b oxidation was about as fast as the corresponding turnover number of quinol oxidation by fumarate, while the [2Fe-2S] and half of the [4Fe-4S] cluster responded more than 2-times slower. The rate constant of the other half of the 4-Fe cluster was one order of magnitude smaller than the turnover number.  相似文献   

12.
The xylene monooxygenase system encoded by the TOL plasmid pWW0 of Pseudomonas putida catalyses the hydroxylation of a methyl side-chain of toluene and xylenes. Genetic studies have suggested that this monooxygenase consists of two different proteins, products of the xylA and xylM genes, which function as an electron-transfer protein and a terminal hydroxylase, respectively. In this study, the electron-transfer component of xylene monooxygenase, the product of xylA, was purified to homogeneity. Fractions containing the xylA gene product were identified by its NADH:cytochrome c reductase activity. The molecular mass of the enzyme was determined to be 40 kDa by SDS/PAGE, and 42 kDa by gel filtration. The enzyme was found to contain 1 mol/mol of tightly but not covalently bound FAD, as well as 2 mol/mol of non-haem iron and 2 mol/mol of acid-labile sulfide, suggesting the presence of two redox centers, one FAD and one [2Fe-2S] cluster/protein molecule. The oxidised form of the protein had absorbance maxima at 457 nm and 390 nm, with shoulders at 350 nm and 550 nm. These absorbance maxima disappeared upon reduction of the protein by NADH or dithionite. The NADH:acceptor reductase was capable of reducing either one- or two-electron acceptors, such as horse heart cytochrome c or 2,6-dichloroindophenol, at an optimal pH of 8.5. The reductase was found to have a Km value for NADH of 22 microM. The oxidation of NADH was determined to be stereospecific; the enzyme is pro-R (class A enzyme). The titration of the reductase with NADH or dithionite yielded three distinct reduced forms of the enzyme: the reduction of the [2Fe-2S] center occurred with a midpoint redox potential of -171 mV; and the reduction of FAD to FAD. (semiquinone form), with a calculated midpoint redox potential of -244 mV. The reduction of FAD. to FAD.. (dihydroquinone form), the last stage of the titration, occurred with a midpoint redox potential of -297 mV. The [2Fe-2S] center could be removed from the protein by treatment with an excess of mersalyl acid. The [2Fe-2S]-depleted protein was still reduced by NADH, giving rise to the formation of the anionic flavin semiquinone observed in the native enzyme, thus suggesting that the electron flow was NADH --> FAD --> [2Fe-2S] in this reductase. The resulting protein could no longer reduce cytochrome c, but could reduce 2,6-dichloroindophenol at a reduced rate.  相似文献   

13.
Benzene dioxygenase from Pseudomonas putida comprises three components, namely a flavoprotein (NADH:ferredoxin oxidoreductase; Mr 81000), an intermediate electron-transfer protein, or ferredoxin (Mr 12000) with a [2Fe-2S] cluster, and a terminal dioxygenase containing two [2Fe-2S] iron-sulphur clusters (Mr 215000), which requires two additional Fe2+ atoms/molecule for oxygenase activity. The ferredoxin and the dioxygenase give e.s.r. signals in the reduced state with rhombic symmetry and average g values of 1.92 and 1.896 respectively. The mid-point redox potentials were determined by e.s.r. titration at pH 7.0 to be -155 mV and -112 mV respectively. The signal from the dioxygenase shows pronounced g anisotropy and most closely resembles those of 4-methoxybenzoate mono-oxygenase from Pseudomonas putida and the [2Fe-2S] 'Rieske' proteins of the quinone-cytochrome c region of electron-transport chains of respiration and photosynthesis.  相似文献   

14.
The membrane-bound respiratory particle complex of Pseudomonas aeruginosa, which reduces nitrate to nitrite using formate as the electron donor, was prepared and characterized by e.p.r. and low-temperature magnetic c.d. (m.c.d.) spectroscopy. The particle complex has two enzymic components, namely nitrate reductase (NiR) and formate dehydrogenase (FDH), which are multi-centred proteins containing molybdenum, iron-sulphur clusters and cytochrome. By using results from work on the purified extracted enzymes NiR and FDH to aid in the assignment, it has been possible to observe spectroscopically all the components of the electron-transfer chain in the intact particle. This led to a proposal for the organization of the metal components of the FDH-NiR chain. Molybdenum ions are at opposite ends of the chain and interact with, respectively, the formate-CO2 couple and the nitrate-nitrite couple. The molybdenum ion at the low-potential end of the chain passes electrons to cytochrome b of FDH, a bishistidine-co-ordinated haem with unusual steric restraint at the iron. The next component is a [4Fe-4S] cluster. This comprises all the components of FDH. Electrons are passed to the molybdenum of NiR via a number, probably two, of [4Fe-4S] clusters. No evidence has been found in this work for the presence of a quinone to mediate electron transfer between FDH and NiR. Cytochrome c appears to be able to feed electrons into the chain at the level of one of the [4Fe-4S] centres of NiR.  相似文献   

15.
Zu Y  Di Bernardo S  Yagi T  Hirst J 《Biochemistry》2002,41(31):10056-10069
The redox properties of the [2Fe-2S] cluster in the 24 kDa subunit of bovine heart mitochondrial NADH:ubiquinone oxidoreductase (complex I) and three of its homologues have been defined using protein-film voltammetry. The clusters in all four examples display characteristic, pH-dependent redox transitions, which, unusually, can be masked by high ionic strength conditions. At low ionic strength (10 mM NaCl) the reduction potential varies by approximately 100 mV between high and low pH limits (pH 5 and 9); thus the redox process is not strongly coupled and is unlikely to form part of the mechanism of energy transduction in complex I. The pH dependence was shown to result from pH-linked changes in protein charge, due to nonspecific protonation events, rather than from the coupling of a specific ionizable residue, and the ionic strength dependence at high and low pH was modeled using extended Debye-Hückel theory. The low potential of the 24 kDa subunit [2Fe-2S] cluster, out of line with the potentials of the other iron-sulfur clusters in complex I, is suggested to play a role in coupling reducing equivalents at the catalytic active site. Finally, the validity of using the [2Fe-2S] cluster in an isolated subunit, as a mechanistic basis for coupled proton-electron transfer in intact complex I, is evaluated.  相似文献   

16.
The reliability of monitoring the redox reactions of cytochrome b using the different wavelengths employed by different authors has been reexamined. It was found that 562-575 nm is suitable in succinate: cytochrome c reductase but not in mitochondria, in which case 562-540 nm is a better pair. Direct optical measurements of the redox reaction kinetics of the mitochondrial Q pool using a commercial dual-wavelength spectrophotometer are possible when succinate is used as the electron donor. Using the correct wavelength pair, and with malonate to slow down the electron input, the reduction course of cytochrome b was still triphasic but a plateau or a turn replaced the oxidation phase previously reported by several authors. At the same time, the reduction course of the Q pool was also triphasic, and in perfect match with that of cytochrome b. Destruction of the Rieske iron-sulfur cluster by British anti-Lewisite (BAL) + O2 treatment or prereduction of the high-potential components made the reduction of both Q and b monophasic. The plot of log (Q/QH2) against log (b3+/b2+) gave a straight line with an n value of 1.7 for cytochrome b at pH 7.4. This n value rose to 2.0 at pH 6.5 and dropped to 1.4 at pH 8.5. On the other hand, the mid-point potential of cytochrome b relative to that of the Q pool remained essentially unchanged between pH 6.5 and 8.4. BAL treatment had a small effect on the midpoint potential of cytochrome b relative to that of the Q pool and had no effect on the n value. Addition of quinone homologues and analogues extended the plateau phase in the reduction of cytochrome b, but exogenous quinones did not equilibrate rapidly with cytochrome b. It was concluded that the appearance of the plateau between the two reduction phases of Q and b is caused by the rapid delivery of electrons to the high-potential components of the respiratory chain as envisaged in the Q cycle; the unexpected n value for cytochrome b suggests a concerted reduction by QH2 of two species of cytochromes b-562.  相似文献   

17.
Ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complexes were demonstrated to be present in the membranes of the alkaliphilic and halophilic purple sulfur bacteria Ectothiorhodospira halophila, Ectothiorhodospira mobilis, and Ectothiorhodospira shaposhnikovii by protoheme extraction, immunoblotting, and electron paramagnetic resonance spectroscopy. The gy values of the Rieske [2Fe-2S] clusters observed in membranes of E. mobilis and E. halophila were 1.895 and 1.910, respectively. In E. mobilis membranes, the cytochrome bc1 complex was present in a stoichiometry of approximately 0.2 per reaction center. This complex was isolated and characterized. It contained four prosthetic groups: low-potential cytochrome b (cytochrome bL; Em = -142 mV), high-potential cytochrome b (cytochrome bH; Em = 116 mV), cytochrome c1 (Em = 341 mV), and a Rieske iron-sulfur cluster. The absorbance spectrum of cytochrome bL displayed an asymmetric alpha-band with a maximum at 564 nm and a shoulder at 559 nm. The alpha bands of cytochrome bH and cytochrome c1 peaked at 559.5 and 553 nm, respectively. These prosthetic groups were associated with three different polypeptides: cytochrome b, cytochrome c1, and the Rieske iron-sulfur protein, with apparent molecular masses of 43, 30, and 21 kDa, respectively. No evidence for the presence of a fourth subunit was obtained. Maximal ubiquinol-cytochrome c oxidoreductase activity of the purified complex was observed at pH 8; the turnover rate was 57 mol of cytochrome c reduced.(mol of cytochrome c1)-1.s-1. The complex showed a strikingly low sensitivity towards typical inhibitors of cytochrome bc1 complexes.  相似文献   

18.
1. The mechanisms by which p-benzoquinol and its derivatives reduce cytochrome c in solution have been investigated. 2. The two major reductants are the species QH- (anionic quinol) and Q.- (anionic semiquinone). A minor route of electron transfer from the fully protonated QH2 species can also occur. 3. The relative contributions of these routes to the overall reduction rate are governed by pH, ionic strength and relative reactant concentrations. 4. For a series of substituted p-benzoquinols, the forward rate constant, k1, of the anionic quinol-mediatd reaction is related to the midpoint potential of the QH-/QH. couple involved in the rate-limiting step, as predicted by the theory of Marcus for outer-sphere electron transfer reactions in a bimolecular collision process. 5. A mechanism for the biological quinol oxidation reactions in mitochondria and chloroplasts is proposed based upon the findings with these reactions in solution.  相似文献   

19.
Cooley JW  Ohnishi T  Daldal F 《Biochemistry》2005,44(31):10520-10532
Multiple instances of low-potential electron-transport pathway inhibitors that affect the structure of the cytochrome (cyt) bc(1) complex to varying degrees, ranging from changes in hydroquinone (QH(2)) oxidation and cyt c(1) reduction kinetics to proteolytic accessibility of the hinge region of the iron-sulfur-containing subunit (Fe/S protein), have been reported. However, no instance has been documented of any ensuing change on the environment(s) of the [2Fe-2S] cluster. In this work, this issue was addressed in detail by taking advantage of the increased spectral and spatial resolution obtainable with orientation-dependent electron paramagnetic resonance (EPR) spectroscopic analysis of ordered membrane preparations. For the first time, perturbation of the low-potential electron-transport pathway by Q(i)-site inhibitors or various mutations was shown to change the EPR spectra of both the cyt b hemes and the [2Fe-2S] cluster of the Fe/S protein. In particular, two interlinked effects of Q(i)-site modifications on the Fe/S subunit, one changing the local environment of its [2Fe-2S] cluster and a second affecting the mobility of this subunit, are revealed. Remarkably, different inhibitors and mutations at or near the Q(i) site induce these two effects differently, indicating that the events occurring at the Q(i) site affect the global structure of the cyt bc(1). Furthermore, occupancy of discrete Q(i)-site subdomains differently impede the location of the Fe/S protein at the Q(o) site. These findings led us to propose that antimycin A and HQNO mimic the presence of QH(2) and Q at the Q(i) site, respectively. Implications of these findings in respect to the Q(o)-Q(i) sites communications and to multiple turnovers of the cyt bc(1) are discussed.  相似文献   

20.
J M Moulis  J Meyer 《Biochemistry》1982,21(19):4762-4771
The sulfur atoms of the two [4Fe-4S] clusters present in the ferredoxin from Clostridium pasteurianum have been replaced by selenium. The substitution is readily carried out by incubating the apoferredoxin with excess amounts of Fe3+, selenite, and dithiothreitol under anaerobic conditions. The UV-visible absorption spectrum of the Se-substituted ferredoxin, the core extrusion of its active sites, and analyses of its iron and selenium contents show that it contains two [4Fe-4Se] clusters. The Se-substituted ferredoxin is considerably less resistant to oxygen or to acidic and alkaline pH than the native ferredoxin: the half-lives of the former are 20-500 times shorter than those of the latter. The native ferredoxin and the Se-substituted ferredoxin display similar kinetic properties when used as electron donors to the hydrogenase from C. pasteurianum. It is of note, however, that the Km and Vmax values are lower for the 2[4Fe-4Se] ferredoxin than for the 2[4Fe-4S] ferredoxin. Reductive and oxidative titrations with dithionite and with thionine, respectively, show that both ferredoxins are two-electron carriers. The redox potentials of the ferredoxins have been measured by equilibrating them with the H2/H+ couple via hydrogenase: values of -423 and -417 mV have been found for the 2[4Fe-4S] ferredoxin and 2[4Fe-4Se] ferredoxin, respectively. Ferredoxins containing both chalcogenides in their [4Fe-4X] (X = S, Se) clusters have been prepared by reconstitution reactions involving mixtures of sulfide and selenide: the latter experiments show that sulfide and selenide are equally reactive in the incorporation of [4Fe-4X] (X = S, Se) sites into ferredoxin. The present report, together with former studies, establishes the general feasibility of the Se/S substitution in [2Fe-2S] and in [4Fe-4S] clusters of proteins and of synthetic analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号