首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) is a unique chemical messenger that has been shown to play a role in the modulation of breathing in amphibians and other vertebrates. In the post-metamorphic tadpole and adult amphibian brainstem, NO, acting via the neuronal isoform of nitric oxide synthase (nNOS), is excitatory to the generation of lung burst activity. In this study, we examine the modulation of breathing by NO during development of the amphibian brainstem. Isolated brainstem preparations from pre-metamorphic and late-stage post-metamorphic tadpoles (Rana catesbeiana) were used to determine the role of NO in modulating central respiratory neural activity. Respiratory neural activity was monitored with suction electrodes recording extracellular activity of cranial nerve rootlets that innervate respiratory musculature. Brainstems were superfused with an artificial cerebrospinal fluid (aCSF) at 20-22 degrees C containing l-nitroarginine (l-NA; 1-10 mM), a non-selective NOS inhibitor. In pre-metamorphic tadpoles, l-NA increased fictive gill ventilation frequency and amplitude, and increased lung burst frequency. By contrast, l-NA applied to the post-metamorphic tadpole brainstem had little effect on fictive buccal activity, but significantly decreased lung burst frequency and the frequency of lung burst episodes. These data indicate that early in development, NO provides a tonic inhibitory input to gill and lung burst activity, but as development progresses, NO provides an excitatory input to lung ventilation. This changing role for NO coincides with the shift in importance in the different respiratory modes during development in amphibians; that is, pre-metamorphic tadpoles rely predominantly on gill ventilation whereas post-metamorphic tadpoles have lost the gills and are obligate air-breathers primarily using lungs for gas exchange. We hypothesize that NO provides a tonic input to the respiratory CPG during development and this changing role reflects the modulatory influence of NO on inhibitory or excitatory modulators or neurotransmitters involved in the generation of respiratory rhythm.  相似文献   

2.
一氧化氮对呼吸节律性放电的调节作用   总被引:3,自引:2,他引:1  
Li ZQ  Wu ZH  Shi Y  Wang NQ 《生理学报》2003,55(5):560-564
实验旨在探讨一氧化氮(nitric oxide,NO)在基本呼吸节律产生和调节中可能的作用。制作新生大鼠离体延髓脑片标本,主要包含面神经后核内侧区,前包钦格复合体、腹侧呼吸组以及背侧呼吸组的一部分。同时保留舌下神经根,用改良Kreb′s液灌流脑片并记录与之相连的舌下神经根呼吸节律性放电(respiratory rhythmical discharge activity,RRDA),在灌流液中分别给予不同浓度的NO供体硝普钠(sodium nitroprusside,SNP),NO合成前体L—精氨酸(L—Arginine,L-Arg)以及神经元型一氧化氮合酶(neuronal nitric oxide synthase,nNOS)特异性抑制剂7-nitro indazole (7-NI),观察其对RRDA的影响。结果显示,nNOS的特异性抑制剂7-NI对吸气时程和放电强度有明显抑制,而NO合成前体L—Arg,以及NO供体SNP对呼吸放电活动没有明显的影响。这提示,在哺乳动物基本呼吸节律的产生和调节中,NO可能对吸气中止和呼吸幅度具有调节作用。  相似文献   

3.
This study tested the hypothesis that voltage-dependent, respiratory-related activity in vitro, inferred from changes in [K(+)](o), changes during development in the amphibian brainstem. Respiratory-related neural activity was recorded from cranial nerve roots in isolated brainstem-spinal cord preparations from 7 premetamorphic tadpoles and 10 adults. Changes in fictive gill/lung activity in tadpoles and buccal/lung activity in adults were examined during superfusion with artificial CSF (aCSF) with [K(+)](o) ranging from 1 to 12 mM (4 mM control). In tadpoles, both fictive gill burst frequency (f(gill)) and lung burst frequency (f(lung)) were significantly dependent upon [K(+)](o) (r(2) > 0.75; p < 0.001) from 1 to 10 mM K(+), and there was a strong correlation between f(gill) and f(lung) (r(2) = 0.65; p < 0.001). When [K(+)](o) was raised to 12 mM, there was a reversible abolition of fictive breathing. In adults, fictive buccal frequency (f(buccal)), was significantly dependent on [K(+)](o) (r(2) = 0.47; p < 0.001), but [K(+)](o) had no effect on f(lung) (p > 0.2), and there was no significant correlation between f(buccal) and f(lung). These data suggest that the neural networks driving gill and lung burst activity in tadpoles may be strongly voltage modulated. In adults, buccal activity, the proposed remnant of gill ventilation in adults, also appears to be voltage dependent, but is not correlated with lung burst activity. These results suggest that lung burst activity in amphibians may shift from a "voltage-dependent" state to a "voltage-independent" state during development. This is consistent with the hypothesis that the fundamental mechanisms generating respiratory rhythm in the amphibian brainstem change during development. We hypothesize that lung respiratory rhythm generation in amphibians undergoes a developmental change from a pacemaker to network-driven process.  相似文献   

4.
运用逆转录-多聚酶联反应(RT-PCR)、鞘内注射和反义技术,研究脊髓水平一氧化氮(NO)对大鼠吗啡戒断反应和脊髓及脑干NMDA1A受体mRNA(NMDA1AR mRNA)表达的影响。结果表明,鞘内注射NOS反义寡核苷酸能明显减轻吗啡戒断反应,且脑型NOS(nNOS)反义寡苷酸的作用强于内皮型NOS(eNOS)反义寡核苷酸,吗啡依赖大鼠脊髓和脑干NMDA1AR mRNA表达增加,纳洛酮催促戒断,使其进一步增加;鞘内注射nNOS反义寡核苷酸,能明显抑制吗啡戒断大鼠脊髓和脑干NMDA1AR mRNA表达的增加;eNOS反义寡核苷酸也可抑制吗戒断大鼠脊髓NMDA1AR mRNA表达的增加,但作用弱于nNOS反义寡核苷酸,对脑干NMDA1AR mRNA表达无明显影响,上述结果提示:脊髓水平NO参与介导吗啡戒断反庆和NMDA受体表达的调控。  相似文献   

5.
Increased blood pressure (BP) in genetic hypertension is usually caused by high activity of sympathetic nervous system (SNS) which is enhanced by central angiotensin II but lowered by central nitric oxide (NO). We have therefore evaluated NO synthase (NOS) activity as well as neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS) protein expression in brainstem and midbrain of adult spontaneously hypertensive rats (SHR) characterized by enhanced sympathetic vasoconstriction. We also studied possible participation of brain NO in antihypertensive effects of chronic captopril treatment of adult SHR. NOS activity was increased in midbrain of SHR compared to Wistar-Kyoto (WKY) rats. This could be ascribed to enhanced iNOS expression, whereas nNOS expression was unchanged and eNOS expression was reduced in this brain region. In contrast, no significant changes of NOS activity were found in brainstem of SHR in which nNOS and iNOS expression was unchanged, but eNOS expression was increased. Chronic captopril administration lowered BP of adult SHR mainly by attenuation of sympathetic tone, whereas the reduction of angiotensin II-dependent vasoconstriction and the decrease of residual BP (amelioration of structural remodeling of resistance vessels) were less important. This treatment did not affect significantly either NOS activity or expression of any NOS isoform in the two brain regions. Our data do not support the hypothesis that altered brain NO formation contributes to sympathetic hyperactivity and high BP of adult SHR with established hypertension.  相似文献   

6.
Both brain and peripheral nitric oxide (NO) play a role in the control of blood pressure and circulatory homeostasis. Central NO production seems to counteract angiotensin II-induced enhancement of sympathetic tone. The aim of our study was to evaluate NO synthase (NOS) activity and protein expression of its three isoforms--neuronal (nNOS), endothelial NOS (eNOS) and inducible (iNOS)--in two brain regions involved in blood pressure control (diencephalon and brainstem) as well as in the kidney of young adult rats with either genetic (12-week-old SHR) or salt-induced hypertension (8-week-old Dahl rats). We have demonstrated reduced nNOS and iNOS expression in brainstem of both hypertensive models. In SHR this abnormality was accompanied by attenuated NOS activity and was corrected by chronic captopril treatment which prevented the development of genetic hypertension. In salt hypertensive Dahl rats nNOS and iNOS expression was also decreased in the diencephalon where neural structures important for salt hypertension development are located. As far as peripheral NOS activity and expression is concerned, renal eNOS expression was considerably reduced in both genetic and salt-induced hypertension. In conclusions, we disclosed similar changes of NO system in the brainstem (but not in the diencephalon) of rats with genetic and salt-induced hypertension. Decreased nNOS expression was associated with increased blood pressure due to enhanced sympathetic tone.  相似文献   

7.
We characterized enzymatic activity of nitric oxide synthase (NOS) in the central nervous system of Aplysia californica, a popular experimental model in cellular and system neuroscience, and provided biochemical evidence for NO-cGMP signaling in molluscs. Aplysia NOS (ApNOS) activity, determined as citrulline formation, revealed its calcium-/calmodulin-(Ca/CaM) and NADPH dependence and it was inhibited by 50% with 5mM of W7 hydrochloride (a potent Ca/CaM-dependent phosphodiesterase inhibitor). A representative set of inhibitors for mammalian NOS isoforms also suppressed NOS activity in Aplysia. Specifically, the ApNOS was inhibited by 65-92% with 500 microM of L-NAME (a competitive NOS inhibitor) whereas d-NAME at the same concentration had no effect. S-Ethylisothiourea hydrobromide (5mM), a selective inhibitor of all NOS isoforms, suppressed ApNOS by 85%, l-N6-(1-iminoethyl)lysine dihydrochloride (L-NIL, 5mM), an iNOS inhibitor, by 78% and L-thiocitrulline (5mM) (an inhibitor of nNOS and iNOS) by greater than 95%. Polyclonal antibodies raised against rat nNOS hybridized with a putative purified ApNOS (160 kDa protein) from partially purified central nervous system homogenates in Western blot studies. Consistent with other studies, the activity of soluble guanylyl cyclase was stimulated as a result of NO interaction with its heme prosthetic group. The basal levels of cGMP were estimated by radioimmunoassay to be 44.47 fmol/microg of protein. Incubation of Aplysia CNS with the NO donors DEA/NONOate (diethylammonium (Z)-1-(N,N-diethylamino) diazen-1-ium-1,2-diolate - 1mM) or S-nitroso-N-acetylpenicillamine (1mM) and simultaneous phosphodiesterase inhibition with 3-isobutyl-1-methylxanthine (1mM) prior to the assay showed a 26-80 fold increase in basal cGMP levels. Addition of ODQ (1H-[1,2,4]oxadiazolo[4,3-a] quinoxaline-1-one - 1mM), a selective inhibitor of soluble guanylyl cyclase, completely abolished this effect. This confirms that NO may indeed function as a messenger in the molluscan CNS, and that cGMP acts as one of its effectors.  相似文献   

8.
Using microinjection techniques, we have explored the isolated, complete midline sectioned brainstem of the frog (Rana catesbeiana) to identify regions that influence the endogenous respiratory-related motor activity. Ten-nanoliter injections of lidocaine (1%), GABA (100 mM) and glutamate (10 and 100 mM) into discrete regions of the rostral and the caudal brainstem produced different effects on the phasic neural discharge. In the rostral site lidocaine, GABA and glutamate injections altered neural burst frequency with little or no effect on burst amplitude. In the caudal site, responses to lidocaine and GABA injections consisted primarily of decreases in neural burst amplitude, often, but not always associated with minor decreases in burst frequency. In this same region, the response to glutamate was characterized by a temporary interruption of the rhythmic neural burst activity. The largest responses to substance injection in both regions were obtained at sites ranging between 200 and 500 m from the ventral surface, in the ventral medullary reticular formation. The results reveal the existence of two areas in the frog brainstem that influence respiratory motor output, one related to the respiratory burst frequency and the other related to the amplitude of the motor output.Abbreviations V trigeminal nerve - VI abducens nerve - VII facial nerve - VIII auditory nerve - X vagal nerve - H hypoglossal nerve - VRG ventral respiratory group - NTS nucleus of the solitary tract  相似文献   

9.
This study examined the direct effects of tricaine methanesulfonate (MS-222), a sodium-channel blocking local anesthetic, on respiratory motor output using an in vitro brain stem preparation of adult North American bullfrogs (Rana catesbeiana). Bullfrogs were anesthetized with halothane, and the brain stem was removed and superfused with artificial cerebrospinal fluid containing MS-222 at concentrations ranging from 0.1 to 1,000 micro M. At the lowest concentration of MS-222, respiratory frequency (fR) increased significantly (P < 0.05), but at higher concentrations, fR progressively decreased and was abolished in all preparations at 1,000 micro M (P < 0.01). Respiratory burst amplitude and burst duration were not affected by MS-222. The frequency of nonrespiratory neural activity did not significantly change with the addition of MS-222 below 1,000 micro M. These data indicate that MS-222 has a significant, direct effect on respiratory motor output from the central nervous system, producing both excitation and inhibition of fictive breathing. The results are consistent with other studies demonstrating that low concentrations of anesthetics generally cause excitation followed by depression at higher concentrations. Although the mechanisms underlying the excitatory effects of MS-222 in this study are unclear, they may include increased excitatory neurotransmission and/or disinhibition of inputs to the respiratory central pattern generator.  相似文献   

10.
The current quantitative study demonstrates that the recruitment of neuronal nitric oxide synthase (nNOS) beneath N-methyl-D-aspartate (NMDA) receptors, via postsynaptic density 95 (PSD-95) proteins significantly enhances nitric oxide (NO) production. Real-time single-cell fluorescence imaging was applied to measure both NO production and Ca(2+) influx in Chinese hamster ovary (CHO) cells expressing recombinant NMDA receptors (NMDA-R), nNOS, and PSD-95. We examined the relationship between the rate of NO production and Ca(2+) influx via NMDA receptors using the NO-reactive fluorescent dye, diaminofluorescein-FM (DAF-FM) and the Ca(2+)-sensitive yellow cameleon 3.1 (YC3.1), conjugated with PSD-95 (PSD-95-YC3.1). The presence of PSD-95 enhanced the rate of NO production by 2.3-fold upon stimulation with 100 microm NMDA in CHO1(+) cells (expressing NMDA-R, nNOS and PSD-95) when compared with CHO1(-) cells (expressing NMDA-R and nNOS lacking PSD-95). The presence of nNOS inhibitor or NMDA-R blocker almost completely suppressed this NMDA-stimulated NO production. The Ca(2+) concentration beneath the NMDA-R, [Ca(2+)](NR), was determined to be 5.4 microm by stimulating CHO2 cells (expressing NMDA-R and PSD-95-YC3.1) with 100 microm NMDA. By completely permealizing CHO1 cells with ionomycin, a general relationship curve of the rate of NO production versus the Ca(2+) concentration around nNOS, [Ca(2+)](NOS), was obtained over the wide range of [Ca(2+)](NOS). This sigmoidal curve had an EC(50) of approximately 1.2 microm of [Ca(2+)](NOS), implying that [Ca(2+)](NR) = 5.4 microm can activate nNOS effectively.  相似文献   

11.
Volgin  D. V.  Seredenko  M. M.  Vasilenko  D. A.  Volgina  A. V. 《Neurophysiology》2000,32(6):360-367
We studied the dynamics of modifications of the respiratory activity generated by semi-isolated medullo-spinal preparations (SIMSP) of 3- to 4-day-old rats related to a drop in the pH of superfusing solution from 7.4 to 7.0. Reactions were recorded in the norm and under conditions of preliminary applications of a noncompetitive blocker of NMDA receptors, ketamine; an inhibitor of nitric oxide synthase (NOS), NG-nitro-L-arginine methyl ester (L-NAME); a substrate for NO synthesis, L-arginine; or an exogenous NO donor, sodium nitroprusside (SN). Under control conditions, test applications of the solution with pH 7.0 resulted in a significant increase in the frequency of inspiratory discharges (ID) recorded from the phrenic nerve and drops in their amplitude and integral intensity. Such SIMSP extracellular acidification-induced responses were inhibited in a dose-dependent manner by ketamine and L-NAME (the effect of the latter was more intensive). The effects of agents increasing the NO level in the tissues were not uniform: L-arginine potentiated an increase in the ID frequency related to application of the acidified solution, while SN inhibited such a reaction. Our findings allow us to suppose that the stimulating influences of the pH-sensitive chemoreceptor structures of the ventrolateral medulla (VLM) on the activity of the medullary respiratory generator of early postnatal rats are realized with the involvement of NMDA receptors of excitatory amino acids and the process of enzyme-mediated NO production. It seems probable that endogenous synthesis of NO in VLM structures mediates and potentiates the effect of activation of the NMDA receptors on the medullary generator of the respiratory rhythm.  相似文献   

12.
Erectile dysfunction is a serious and common complication of diabetes mellitus. The proposed mechanisms for erectile dysfunction in diabetes include central and autonomic neuropathy, endothelial dysfunction, and smooth muscle dysfunction. The paraventricular nucleus (PVN) of the hypothalamus is known to be involved in centrally mediated penile erection. This study was designed to examine the role of nitric oxide (NO) within the central nervous system component of the behavioral responses including erection in diabetic rats. N-methyl-D-aspartic acid (NMDA)-induced erection, yawning, and stretch through the PVN can be blocked by prior administration of NO synthase (NOS) blocker, L-NMMA, in freely moving, conscious male normal rats. Four weeks after streptozotocin (STZ) and vehicle injections, NMDA-induced erection, yawning, and stretch responses through the PVN are significantly blunted in diabetic rats compared with control rats. Examination of neuronal NOS (nNOS) protein by Western blot analysis indicated a reduced amount of nNOS protein in the PVN of rats with diabetes compared with control rats. Furthermore, restoring nNOS within the PVN by gene transfer using adenoviral transfection significantly restored the erectile and yawning responses to NMDA in diabetic rats. These data demonstrate that a blunted NO mechanism within the PVN may contribute to NMDA-induced erectile dysfunction observed in diabetes mellitus.  相似文献   

13.
The effects of temperature and pH/CO(2) were examined in isolated brainstem preparations from adult North American bullfrogs (Rana catesbeiana). These experiments were undertaken to determine the effects of temperature on fictive breathing, central pH/CO(2) chemoreception, and to examine potential alphastat regulation of respiration in vitro. Adult bullfrog brainstem preparations were isolated, superfused with an artificial cerebrospinal fluid (aCSF) and respiratory-related neural activity was recorded from cranial nerves V, X and XII. In Series I experiments (N=8), brainstem preparations were superfused with aCSF equilibrated with 2% CO(2) at temperatures ranging from 10 to 30 degrees C. Neural activity was present in all preparations in the temperature range of 15-25 degrees C, but was absent in most preparations when aCSF was at 10 or 30 degrees C. The absence of fictive breathing at high (30 degrees C) temperatures was transient since fictive breathing could be restored upon returning the preparation to 20 degrees C. In Series II experiments (N=10), preparations were superfused with aCSF equilibrated with 0%, 2% and 5% CO(2) at temperatures of 15, 20 and 25 degrees C. Fictive breathing frequency (f(R)) was significantly dependent upon aCSF pH at all three temperatures, with slopes ranging from -0.82 min(-1) pH unit(-1) (15 degrees C) to -3.3 min(-1) pH unit(-1) (20 degrees C). There was a significant difference in these slopes (P<0.02), indicating that central chemoreceptor sensitivity increased over this temperature range. Fictive breathing frequency was significantly dependent upon the calculated alpha-imidazole (alpha(Im)) ionization (P<0.05), consistent with the alphastat hypothesis for the effects of temperature on the regulation of ventilation. However, most of the variation in f(R) was not explained by alpha(Im) (R(2)=0.05), suggesting that other factors account for the regulation of fictive breathing in this preparation. The results indicate that the in vitro brainstem preparation of adult bullfrogs has a limited temperature range (15-25 degrees C) over which fictive breathing is consistently active. Although there is a close correspondence of ventilation in vitro and in vivo at low temperatures, these data suggest that, as temperature increases, changes in ventilation in the intact animal are likely to be more dependent upon peripheral feedback which assumes a greater integrative role with respect to chemoreceptor drive, respiratory frequency and tidal volume.  相似文献   

14.
Nitric oxide (NO) is mainly generated by endothelial NO synthase (eNOS) or neuronal NOS (nNOS). Recent studies indicate that angiotensin II generates NO release, which modulates renal vascular resistance and sympathetic neurotransmission. Experiments in wild-type [eNOS(+/+) and nNOS(+/+)], eNOS-deficient [eNOS(-/-)], and nNOS-deficient [nNOS(-/-)] mice were performed to determine which NOS isoform is involved. Isolated mice kidneys were perfused with Krebs-Henseleit solution. Endogenous norepinephrine release was measured by HPLC. Angiotensin II dose dependently increased renal vascular resistance in all mice species. EC(50) and maximal pressor responses to angiotensin II were greater in eNOS(-/-) than in nNOS(-/-) and smaller in wild-type mice. The nonselective NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME; 0.3 mM) enhanced angiotensin II-induced pressor responses in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. In nNOS(+/+) mice, 7-nitroindazole monosodium salt (7-NINA; 0.3 mM), a selective nNOS inhibitor, enhanced angiotensin II-induced pressor responses slightly. Angiotensin II-enhanced renal nerve stimulation induced norepinephrine release in all species. L-NAME (0.3 mM) reduced angiotensin II-mediated facilitation of norepinephrine release in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. 7-NINA failed to modulate norepinephrine release in nNOS(+/+) mice. (4-Chlorophrnylthio)guanosine-3', 5'-cyclic monophosphate (0.1 nM) increased norepinephrine release. mRNA expression of eNOS, nNOS, and inducible NOS did not differ between mice strains. In conclusion, angiotensin II-mediated effects on renal vascular resistance and sympathetic neurotransmission are modulated by NO in mice. These effects are mediated by eNOS and nNOS, but NO derived from eNOS dominates. Only NO derived from eNOS seems to modulate angiotensin II-mediated renal norepinephrine release.  相似文献   

15.
Li ZC  Li L  Yan HX  Hu HY  Ma YQ  Yang WX  Chen L  Zheng Y 《生理学报》2005,57(2):147-153
本文旨在研究川芎嗪对缺氧引起的呼吸变化和脑干神经元型一氧化氮合酶(neuronal nitric oxide synthase,nNOS)表达的影响。用吸入8%O2+92%N2的方法引起大鼠全身性缺氧,以膈肌放电作为指标,动态观察呼吸活动的变化;用免疫组织化学的方法观察脑干中nNOS表达的变化。在缺氧组大鼠,缺氧20 min时,呼吸活动受到显著抑制,表现为吸气时程缩短,呼气时程延长,呼吸频率减慢和吸气幅度降低(P<0.05);在川芎嗪预处理组大鼠,缺氧未引起呼吸抑制(P>0.05)。缺氧时,延髓腹外侧网状核、斜方体核、舌下神经核和面神经核的nNOS表达增加(P<0.05);川芎嗪预处理组大鼠上述核团的nNOS的表达均进一步增加(P<0.05)。结果表明,川芎嗪对缺氧引起的呼吸抑制有对抗作用,nNOS可能参与了这一过程。  相似文献   

16.
M Ikeda  T Komiyama  I Sato  T Himi  S Murota 《Life sciences》1999,64(18):1623-1630
To test for a possible role of nitric oxide (NO) in the neurotoxicity of ethanol, we studied the effects of ethanol on the neuronal NO synthase (nNOS) both in vitro and in vivo. Ethanol, up to 200 mM, did not change the NOS activity in the cerebellar homogenate or the production of NO by the cultured cerebellar granule cells. The number of NADPH diaphorase-positive cells in the culture did not change after the exposure to 200 mM ethanol in vitro. The NOS activity in the various brain regions of mice remained similar to the controls after the acute (3 g/kg) and the chronic (33 g/kg/day, 3.5 days) administration of ethanol. N(omega)-nitro-L-arginine, a NOS inhibitor, did not affect the ethanol-withdrawal behavior. These results indicate that nNOS is resistant to ethanol at clinically relevant concentrations and that ethanol affects the NO-operated system in the brain through a pathway other than that of nNOS.  相似文献   

17.
Saransaari P  Oja SS 《Amino acids》2008,34(3):429-436
Summary. Nitric oxide (NO) has been shown to regulate neurotransmitter release in the brain; both inhibitory and excitatory effects have been seen. Taurine is essential for the development and survival of neural cells and protects them under cell-damaging conditions. In the brain stem, it regulates many vital functions such as cardiovascular control and arterial blood pressure. Now we studied the effects of the NO-generating compounds hydroxylamine (HA), S-nitroso-N-acetylpenicillamine (SNAP) and sodium nitroprusside (SNP) on the release of preloaded [3H]taurine under normal and ischemic conditions in slices prepared from the mouse brain stem from developing (7-day-old) to young adult (3-month-old) mice. In general, the effects of NO on the release were somewhat complex and difficult to explain, as expected from the multifunctional role of NO in the central nervous system. The basal initial release under normal conditions was enhanced by the NO donors 5 mM HA and 1.0 mM SNAP at both ages, but SNP was inhibitory in developing mice. The release was markedly enhanced by K+ stimulation. The effects of HA, SNAP and SNP on the basal release were not antagonized by the NO synthase inhibitor NG-nitro-L-arginine (L-NNA, 1.0 mM), demonstrating that mechanisms other than NO synthesis are involved. Taurine release in developing mice in the presence of SNP was reduced by the inhibitor of soluble guanylate cyclase, 1H-(1,2,3)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), indicating the possible involvement of cGMP. In normoxia, N-methyl-D-aspartate (NMDA, 1.0 mM) enhanced the SNAP- and HA-evoked taurine release in developing mice and the HA-evoked release in adults. In ischemia, both K+ stimulation and NMDA potentiated the NO-induced release, particularly in the immature mice, probably without the involvement of the NO synthase or cGMP. The substantial release of taurine in the developing brain stem evoked by NO donors together with NMDA might represent signs of important mechanisms against excitotoxicity which protect the brain stem under cell-damaging conditions. Authors’ address: Prof. Pirjo Saransaari, Brain Research Center, Medical School University of Tampere, Tampere, FIN-3 3014, Finland  相似文献   

18.
The effect of muscle activation on muscle nitric oxide (NO) production remains controversial. Whereas NO release increases in in vitro activated muscles and in vivo limb muscles, diaphragmatic NO synthase (NOS) activity declines after 3 h of inspiratory resistive loading (IRL). We tested in this study the hypotheses that acute IRL decreases diaphragmatic NO derivatives levels and reduces protein expression of neuronal (nNOS), endothelial (eNOS), and inducible (iNOS) NO synthases, as well as 3-nitrotyrosine formation. Anesthetized, tracheostomized, spontaneously breathing adult rats were subjected to IRL (50% of the maximum inspiratory pressure) for 1, 3, or 6 h. Quietly breathing rats served as controls. After 3 h of IRL, muscle eNOS and nNOS protein levels rose by 80 and 60% of control values, respectively. Whereas eNOS expression did not change any further, nNOS expression reached 550% of control values after 6 h of IRL. Strong iNOS protein expression was detected in the diaphragms after 6 h of IRL. Total NO derivatives levels in the diaphragm declined during IRL as a result of reduction in nitrate, nitrite, and nitrosothiols. Diaphragmatic protein tyrosine nitration decreased in response to IRL, and this reduction was mainly due to reduced tyrosine nitration of enolase and aldolase. We conclude that diaphragmatic NO derivatives levels decline in response to IRL and that the rise in diaphragmatic NOS protein expression may be a compensatory response designed to counterbalance the decline in NOS activity.  相似文献   

19.
Spontaneous high-frequency, low-amplitude and low-frequency, high-amplitude efferent bursting patterns of cranial and spinal motor nerve activity in the in vitro brainstem preparation of the bullfrog tadpole Rana catesbeiana have been characterized as fictive gill and lung ventilation, respectively (Gdovin MJ, Torgerson CS, Remmers JE). Characterization of gill and lung ventilatory activity in cranial nerves in the spontaneously breathing tadpole Rana catesbeiana, FASEB J 1996;10(3):A642; Gdovin MJ, Torgerson CS, Remmers JE. Neurorespiratory pattern of gill and lung ventilation in the decerebrate spontaneously breathing tadpole, Respir Physiol 1998;113:135 146; Pack AI, Galante RJ, Walker RE, Kubin LK, Fishman AP. Comparative approach to neural control of respiration, In: Speck DF, Dekin MS, Revelette WR, Frazier DT, editors. Respiratory Control Central and Peripheral Mechanisms. Lexington: University of Kentucky Press, 1993:52-57). In addition, the ontogenetic dependence of central respiratory chemoreceptor stimulation on fictive gill and lung ventilation has been previously described (Torgerson CS, Gdovin MJ, Remmers JE. Fictive gill and lung ventilation in the pre- and post-metamorphic tadpole brainstem, J Neurophysiol 1998, in press). To investigate the neural substrates responsible for central respiratory rhythm generation of gill and lung ventilation in the developing tadpole, we recorded efferent activities of cranial nerve (CN) V, VII, and X and spinal nerve (SN) II during changes in superfusate PCO2 before and after multiple transection of the in vitro brainstem. The brainstem was transected between CN VIII and IX and the response to changes in PCO2 was recorded. A second transection was then made between the caudal margin of CN X and rostral to SN II. Preliminary data reveal that robust gill ventilation was recorded consistently only if the segment of brainstem included CN X, whereas the loci capable of eliciting fictive lung bursting patterns appeared to differ depending on developmental stage. These data demonstrate that the neural substrate required for fictive gill and lung ventilation exists in anatomically separate regions such that the gill central pattern generator (CPG) is located in the caudal medulla at the level of CN X throughout development, whereas the location of the lung CPG is located more rostrally at the level of CN VII in the post-metamorphic larva. Both in vivo and in vitro studies revealed two distinct neural bursting patterns associated with gill and lung ventilation. Sequential activation of CN V, VII, X were observed during gill ventilation of in vivo and fictive gill ventilation in vitro, whereas these nerve activities, along with SN II displayed more synchronous bursting patterns of activation during lung ventilation and fictive lung breaths.  相似文献   

20.
Nitric oxide (NO) is a potent central neuromodulator of respiration, yet its scope and site of action are unclear. We used 7-nitroindazole (7-NI), a selective inhibitor of endogenous neuronal NO synthesis, to investigate the neurogenesis of respiration in larval bullfrog (Rana catesbeiana) isolated brain stems. 7-NI treatment (0.0625-0.75 mM) increased the specific frequency of buccal ventilation (BV) events, indicating influence on BV central rhythm generators (CRGs). The drug reduced occurrence, altered burst shape, and disrupted clustering of lung ventilation (LV) events, without altering their specific frequency. LV burst occurrence and clustering also differed between pH conditions. We conclude that NO has diverse effects on respiratory rhythmogenesis, being necessary for the expression of respiratory rhythms, inhibiting the frequency of BV CRG, and affecting both shape and clustering of LV bursts through conditional modulation of LV CRG. We confirm central chemosensitivity in these preparations and demonstrate chemomodulation of LV burst clustering and occurrence but not specific frequency. Results support distinct oscillators underlying LV and BV CRGs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号