首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
The human globin locus control region-binding protein, NF-E2, was purified by DNA affinity chromatography. Its tissue-specific component, p45 NF-E2, was cloned by use of a low-stringency library screen with murine p45 NF-E2 cDNA (N. C. Andrews, H. Erdjument-Bromage, M. B. Davidson, P. Tempst, and S. H. Orkin, Nature [London] 362:722-728, 1993). The human p45 NF-E2 gene was localized to chromosome 12q13 by fluorescent in situ hybridization. Human p45 NF-E2 and murine p45 NF-E2 are highly homologous basic region-leucine zipper (bZIP) proteins with identical DNA-binding domains. Immunoprecipitation experiments demonstrated that p45 NF-E2 is associated in vivo with an 18-kDa protein (p18). Because bZIP proteins bind DNA as dimers, we infer that native NF-E2 must be a heterodimer of 45- and 18-kDa subunits. Although AP-1 and CREB copurified with NF-E2, no evidence was found for heterodimer formation between p45 NF-E2 and proteins other than p18. Thus, p18 appears to be the sole specific partner of p45 NF-E2 in erythroid cells. Cloning of human p45 NF-E2 should permit studies of the role of NF-E2 in globin gene regulation and erythroid differentiation.  相似文献   

7.
8.
9.
10.
11.
12.
13.

Background

The regulation of Notch signaling heavily relies on ubiquitination events. Drosophila Su(dx), a member of the HECT family of ubiquitin-ligases, has been described as a negative regulator of Notch signaling, acting on the post-endocytic sorting of Notch. The mammalian ortholog of Su(dx), Itch/AIP4, has been shown to have multiple substrates, including Notch, but the precise events regulated by Itch/AIP4 in the Notch pathway have not been identified yet.

Methodology/Principal Findings

Using Itch-/- fibroblasts expressing the Notch1 receptor, we show that Itch is not necessary for Notch activation, but rather for controlling the degradation of Notch in the absence of ligand. Itch is indeed required after the early steps of Notch endocytosis to target it to the lysosomes where it is degraded. Furthermore Itch/AIP4 catalyzes Notch polyubiquitination through unusual K29-linked chains. We also demonstrate that although Notch is associated with Itch/AIP4 in cells, their interaction is not detectable in vitro and thus requires either a post-translational modification, or a bridging factor that remains to be identified.

Conclusions/Significance

Taken together our results identify a specific step of Notch regulation in the absence of any activation and underline differences between mammalian and Drosophila Notch pathways.  相似文献   

14.
15.
16.
High-level, tissue-specific expression of the beta-globin genes requires the presence of an upstream locus control region (LCR). The overall enhancer activity of the beta-globin complex LCR (beta-LCR) is dependent on the integrity of the tandem NF-E2 sites of HS-2. The NF-E2 protein which binds these sites is a heterodimeric basic leucine zipper protein composed of a tissue-specific subunit, p45 NF-E2, and a smaller subunit, p18 NF-E2, that is widely expressed. In these studies, we sought to investigate the role of NF-E2 in globin expression. We show that expression of a dominant-negative mutant p18 greatly reduces the amount of functional NF-E2 complex in the cell. Reduced levels of both alpha- and beta-globin were associated with the lower levels of NF-E2 activity in this cell line. Globin expression was fully restored upon the introduction of a tethered p45-p18 heterodimer. We also examined CB3 cells, a mouse erythroleukemia (MEL) cell line that does not express endogenous p45 NF-E2, and demonstrated that the restoration of globin gene expression was dependent upon the levels of expressed tethered NF-E2 heterodimer. Results of DNase I hypersensitivity mapping and in vivo footprinting assays showed no detectable chromatin alterations in beta-LCR HS-2 due to loss of NF-E2. Finally, we examined the specificity of NF-E2 for globin gene expression in MEL cells. These experiments indicate a critical role for the amino-terminal domain of p45 NF-E2 and show that a related protein, LCRF1, is unable to restore globin gene expression in p45 NF-E2-deficient cells. From these results, we conclude that NF-E2 is specifically required for high level goblin gene expression in MEL cells.  相似文献   

17.
18.
The stress-responding protein, GADD45α, plays important roles in cell cycle checkpoint, DNA repair and apoptosis. In our recent study, we demonstrate that GADD45α undergoes a dynamic ubiquitination and degradation in vivo, which process can be blocked by the cytotoxic reagent, arsenite, resulting in GADD45α accumulation to activate JNKs cell death pathway, thereby revealing a novel mechanism for the cellular GADD45α functional regulation. But the factors involved in GADD45α stability modulations are unidentified. Here, we demonstrated that MDM2 was an E3 ubiquitin ligase for GADD45α. One of MDM2-binding partner, ribosomal protein S7, interacted with and stabilized GADD45α through preventing the ubiquitination and degradation of GADD45α mediated by MDM2. This novel function of S7 is unrelated to p53 but seems to depend on S7/MDM2 interaction, for the S7 mutant lacking MDM2-binding ability lost its function to stabilize GADD45α. Further investigations indicated that arsenite treatment enhanced S7–MDM2 interaction, resulting in attenuation of MDM2-dependent GADD45α ubiquitination and degradation, thereby leading to GADD45α-dependent cell death pathway activation. Silencing S7 expression suppressed GADD45α-dependent cytotoxicity induced by arsenite. Our findings thus identify a novel function of S7 in control of GADD45α stabilization under both basal and stress conditions and its significance in mediating arsenite-induced cellular stress.  相似文献   

19.
ERBB receptors have an important function in mammalian development and normal physiology, but overexpression and poor downregulation of ERBB receptors have been associated with malignant growth. Ligand-induced ERBB receptor signaling is terminated by clathrin-dependent receptor endocytosis, followed by incorporation of activated receptor complexes into multi-vesicular bodies and subsequent degradation in lysosomes. In the case of ERBB1, also known as the EGF receptor, it has been shown that ubiquitination serves as a signal to facilitate internalization and subsequent endosomal sorting, but little is known about the role of ubiquitination of other ERBB receptors. In the present study we investigated the regulation of ubiquitination and deubiquitination of the ERBB4 CYT-1 and CYT-2 isoforms in the context of chimeric EGFR-ERBB4 receptors. We demonstrate that EGFR-ERBB4 CYT-2 chimera shows decreased ligand-induced downregulation and EGF-degradation, as well as enhanced EGF recycling, when compared to EGFR-ERBB4 CYT-1. Moreover we show that the mutation Y1103F in the binding site for Cbl which is present in both CYT-1 and CYT-2, does not influence ERBB4 endosomal trafficking. We further demonstrate that total ligand-induced ubiquitination of CYT-1 is higher than that of CYT-2, whereby CYT-1 ubiquitination is mainly dependent on the PPXY1056 Itch binding site for the E3-ligase Itch which is only present in CYT-1, while that of CYT-2 is dependent on the Y1103 Cbl binding site. The E3-ligase c-Cbl is more efficiently phosphorylated upon EGF stimulation of the CYT-2 than the CYT-1 isoform. Moreover our data show that the pY1103 Cbl binding site is required for K48-polyubiquitination of both CYT-1 and CYT-2, whereas the PPXY1056 Itch binding site is required for K63-polyubiquitination of CYT-1. We further demonstrate that EGF stimulation of EGFR-ERBB4 CYT-1 and CYT-2 does not result in efficient binding to and tyrosine phosphorylation of the ESCRT-0 subunit Hrs. Finally, even though CYT-1 shows ligand-induced K63-polyubiquitination, it is not subjected to deubiquitination by the K63 polyubiquitin-specific AMSH deubiquitinating enzyme, while CYT-1 is slightly deubiquitinated by USP8. We conclude that Cbl and Itch binding sites in ERBB4 CYT-1 and CYT-2 mediate K48- and K63-polyubiquitination, respectively.  相似文献   

20.
The A+U-rich element (ARE) in the 3′ non-coding region (3′ NCR) of short-lived cytokine mRNAs binds several regulatory proteins, including hnRNP D/AUF1, which comprises four isoforms of 37, 40, 42 and 45 kDa. ARE-mRNA degradation involves ubiquitin–proteasome activity, and one or more AUF1 proteins are thought to be ubiquitinated. Here we have characterized the mechanism for differential ubiquitination and degradation of the different AUF1 protein isoforms. We demonstrate in an in vitro ubiquitination system that the p37, followed by the p40 protein, are strongly ubiquitinated, whereas the p42 and p45 forms are not. Over expression in cells of enzymes that control the ubiquitin cycle were found to control p37 and p40 AUF1 protein levels through ubiquitination and proteasome activity, but not p42 and p45 forms. The p42 and p45 AUF1 proteins share a C-terminal exon 7 that is not found in the p37/p40 isoforms. Our studies show that exon 7 blocks ubiquitination and rapid degradation of AUF1 proteins, whereas its deletion permits ubiquitination to occur and promotes rapid turnover of AUF1 proteins. Thus, the stabilities of AUF1 isoforms are differentially controlled by insertion of an alternate exon that regulates ubiquitin targeting activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号