首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organisms use proteins to perform an enormous range of functions that are essential for life. Proteins are usually composed of 20 different kinds of amino acids that each contain between one and four nitrogen atoms. In aggregate, the nitrogen atoms that are bound in proteins typically account for a substantial fraction of the nitrogen in a cell. Many organisms obtain the nitrogen that they use to make proteins from the environment, where its availability can vary greatly. These observations prompt the question: can environmental nitrogen scarcity lead to adaptive evolution in the nitrogen content of proteins? In this issue, Gilbert & Fagan (2011) address this question in the marine cyanobacteria Prochlorococcus, examining a variety of ways in which cells might be thrifty with nitrogen when making proteins. They show that different Prochlorococcus strains vary substantially in the average nitrogen content of their encoded proteins and relate this variation to nitrogen availability in different marine habitats and to genomic base composition (GC content). They also consider biases in the nitrogen content of different kinds of proteins. In most Prochlorococcus strains, a group of proteins that are commonly induced during nitrogen stress are poor in nitrogen relative to other proteins, probably reflecting selection for reduced nitrogen content. In contrast, ribosomal proteins are nitrogen rich relative to other Prochlorococcus proteins, and tend to be down‐regulated during nitrogen limitation. This suggests the possibility that decaying ribosomal proteins act as a source of nitrogen‐rich amino acids during periods of nitrogen stress. This work contributes to our understanding of how nutrient limitation might lead to adaptive variation in the composition of proteins and signals that marine microbes hold great promise for testing hypotheses about protein elemental costs in the future.  相似文献   

2.
Prochlorococcus marinus, one of the most abundant marine cyanobacteria in the global ocean, is classified into low‐light (LL) and high‐light (HL) adapted ecotypes. These two adapted ecotypes differ in their ecophysiological characteristics, especially whether adapted for growth at high‐light or low‐light intensities. However, some evolutionary relationships of Prochlorococcus phylogeny remain to be resolved, such as whether the strains SS120 and MIT9211 form a monophyletic group. We use the Natural Vector (NV) method to represent the sequence in order to identify the phylogeny of the Prochlorococcus. The natural vector method is alignment free without any model assumptions. This study added the covariances of amino acids in protein sequence to the natural vector method. Based on these new natural vectors, we can compute the Hausdorff distance between the two clades which represents the dissimilarity. This method enables us to systematically analyze both the dataset of ribosomal proteomes and the dataset of 16s‐23s rRNA sequences in order to reconstruct the phylogeny of Prochlorococcus. Furthermore, we apply classification to inspect the relationship of SS120 and MIT9211. From the reconstructed phylogenetic trees and classification results, we may conclude that the SS120 does not cluster with MIT9211. This study demonstrates a new method for performing phylogenetic analysis. The results confirm that these two strains do not form a monophyletic clade in the phylogeny of Prochlorococcus.  相似文献   

3.
4.
Phosphonates (Pn) are diverse organic phosphorus (P) compounds containing C–P bonds and comprise up to 25% of the high-molecular weight dissolved organic P pool in the open ocean. Pn bioavailability was suggested to influence markedly bacterial primary production in low-P areas. Using metagenomic data from the Global Ocean Sampling expedition, we show that the main potential microbial contributor in Pn utilization in oceanic surface water is the globally important marine primary producer Prochlorococcus. Moreover, a number of Prochlorococcus strains contain two distinct putative Pn uptake operons coding for ABC-type Pn transporters. On the basis of microcalorimetric measurements, we find that each of the two different putative Pn-binding protein (PhnD) homologs transcribed from these operons possesses different Pn- as well as inorganic phosphite-binding specificities. Our results suggest that Prochlorococcus adapt to low-P environments by increasing the number of Pn transporters with different specificities towards phosphite and different Pns.  相似文献   

5.
Prochlorococcus is the numerically dominant phototroph in the oligotrophic subtropical ocean and carries out a significant fraction of marine primary productivity. Although field studies have provided evidence for nitrate uptake by Prochlorococcus, little is known about this trait because axenic cultures capable of growth on nitrate have not been available. Additionally, all previously sequenced genomes lacked the genes necessary for nitrate assimilation. Here we introduce three Prochlorococcus strains capable of growth on nitrate and analyze their physiology and genome architecture. We show that the growth of high-light (HL) adapted strains on nitrate is ∼17% slower than their growth on ammonium. By analyzing 41 Prochlorococcus genomes, we find that genes for nitrate assimilation have been gained multiple times during the evolution of this group, and can be found in at least three lineages. In low-light adapted strains, nitrate assimilation genes are located in the same genomic context as in marine Synechococcus. These genes are located elsewhere in HL adapted strains and may often exist as a stable genetic acquisition as suggested by the striking degree of similarity in the order, phylogeny and location of these genes in one HL adapted strain and a consensus assembly of environmental Prochlorococcus metagenome sequences. In another HL adapted strain, nitrate utilization genes may have been independently acquired as indicated by adjacent phage mobility elements; these genes are also duplicated with each copy detected in separate genomic islands. These results provide direct evidence for nitrate utilization by Prochlorococcus and illuminate the complex evolutionary history of this trait.  相似文献   

6.
The effects on edaphic algae associated with a pure stand of the cord grass, Spartina alterniflora Loisel of manipulating light intensity and additions of inorganic nitrogen and phosphorus as fertilizers to the marsh surface have been investigated for one year. The standing crop of edaphic algae as measured by chlorophyll a production was limited only by phosphorus supplies during fall and winter, by both phosphorus and nitrogen in spring, and only by nitrogen during the summer. Since the responses were in phase with the seasonal fluctuations in the concentration of nitrogen and phosphorus, it is concluded that the flood tide is the major source of nitrogen and phosphorus compounds for edaphic algal growth. Reduction in the quantity of light reaching the edaphic algae by Spartina cover is always a limiting factor for the standing crop. A gradient in the composition of the algal flora is directly related to light intensity, and indicates that this factor determines the relative contribution of diatoms and filamentous algae to the community. The interaction of light intensity and nutrients in regulating the production of edaphic algae and cord grass on the marsh under study over a yearly cycle has also been investigated.  相似文献   

7.
Picocyanobacteria represented by Prochlorococcus and Synechococcus have an important role in oceanic carbon fixation and nutrient cycling. In this study, we compared the community composition of picocyanobacteria from diverse marine ecosystems ranging from estuary to open oceans, tropical to polar oceans and surface to deep water, based on the sequences of 16S-23S rRNA internal transcribed spacer (ITS). A total of 1339 ITS sequences recovered from 20 samples unveiled diverse and several previously unknown clades of Prochlorococcus and Synechococcus. Six high-light (HL)-adapted Prochlorococcus clades were identified, among which clade HLVI had not been described previously. Prochlorococcus clades HLIII, HLIV and HLV, detected in the Equatorial Pacific samples, could be related to the HNLC clades recently found in the high-nutrient, low-chlorophyll (HNLC), iron-depleted tropical oceans. At least four novel Synechococcus clades (out of six clades in total) in subcluster 5.3 were found in subtropical open oceans and the South China Sea. A niche partitioning with depth was observed in the Synechococcus subcluster 5.3. Members of Synechococcus subcluster 5.2 were dominant in the high-latitude waters (northern Bering Sea and Chukchi Sea), suggesting a possible cold-adaptation of some marine Synechococcus in this subcluster. A distinct shift of the picocyanobacterial community was observed from the Bering Sea to the Chukchi Sea, which reflected the change of water temperature. Our study demonstrates that oceanic systems contain a large pool of diverse picocyanobacteria, and further suggest that new genotypes or ecotypes of picocyanobacteria will continue to emerge, as microbial consortia are explored with advanced sequencing technology.  相似文献   

8.
Summary: Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45°N to 40°S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level.  相似文献   

9.
Chemolithoautotrophic Epsilonproteobacteria are ubiquitous in sulfidic, oxygen-poor habitats, including hydrothermal vents, marine oxygen minimum zones, marine sediments and sulfidic caves and have a significant role in cycling carbon, hydrogen, nitrogen and sulfur in these environments. The isolation of diverse strains of Epsilonproteobacteria and the sequencing of their genomes have revealed that this group has the metabolic potential to occupy a wide range of niches, particularly at dynamic deep-sea hydrothermal vents. We expand on this body of work by examining the population genomics of six strains of Lebetimonas, a vent-endemic, thermophilic, hydrogen-oxidizing Epsilonproteobacterium, from a single seamount in the Mariana Arc. Using Lebetimonas as a model for anaerobic, moderately thermophilic organisms in the warm, anoxic subseafloor environment, we show that genomic content is highly conserved and that recombination is limited between closely related strains. The Lebetimonas genomes are shaped by mobile genetic elements and gene loss as well as the acquisition of novel functional genes by horizontal gene transfer, which provide the potential for adaptation and microbial speciation in the deep sea. In addition, these Lebetimonas genomes contain two operons of nitrogenase genes with different evolutionary origins. Lebetimonas expressed nifH during growth with nitrogen gas as the sole nitrogen source, thus providing the first evidence of nitrogen fixation in any Epsilonproteobacteria from deep-sea hydrothermal vents. In this study, we provide a comparative overview of the genomic potential within the Nautiliaceae as well as among more distantly related hydrothermal vent Epsilonproteobacteria to broaden our understanding of microbial adaptation and diversity in the deep sea.  相似文献   

10.
11.
胡启武  聂兰琴  郑艳明  吴琴  尧波  郑林 《生态学报》2014,34(9):2246-2255
为阐明沙化程度和林龄对湿地松(Pinus elliottii)叶片及林下土壤碳(C)、氮(N)、磷(P)化学计量特征影响,探讨C、N、P化学计量比对沙山植被恢复的指示意义,在鄱阳湖多宝沙山沿沙化梯度测定了不同林龄湿地松叶片及林下土壤C、N、P含量。结果表明:1)在叶片C、N、P及其化学计量比中叶N与C∶N对沙化程度和林龄变化反应最为敏感。对于轻度与中度沙化区的5年生与10年生湿地松林,林龄、林龄与沙化程度的交互作用均对叶N及C∶N产生显著影响;对于中度与重度沙化区的2年生和10年生湿地松林,林龄和沙化程度均显著影响叶N与C∶N。2)叶片与土壤二者C、N、P及化学计量比对沙化程度与林龄变化的响应不完全一致。林龄、林龄与沙化程度的交互作用对轻度与中度沙化区5年生和10年生湿地松林土壤全N有显著影响;对于中度与重度沙化区2年生和10年生湿地松林,仅沙化程度对土壤全磷以及林龄对土壤有机碳影响显著。3)10年生湿地松叶片N∶P平均值为20.63,10年生以下湿地松叶片N∶P平均值为15.61,随着林龄的增加,湿地松生长由N、P共同限制逐渐转向更受P的限制。  相似文献   

12.
Prochlorococcus is one of the dominant cyanobacteria and a key primary producer in oligotrophic intertropical oceans. Here we present an overview of the pathways of nitrogen assimilation in Prochlorococcus, which have been significantly modified in these microorganisms for adaptation to the natural limitations of their habitats, leading to the appearance of different ecotypes lacking key enzymes, such as nitrate reductase, nitrite reductase, or urease, and to the simplification of the metabolic regulation systems. The only nitrogen source utilizable by all studied isolates is ammonia, which is incorporated into glutamate by glutamine synthetase. However, this enzyme shows unusual regulatory features, although its structural and kinetic features are unchanged. Similarly, urease activities remain fairly constant under different conditions. The signal transduction protein PII is apparently not phosphorylated in Prochlorococcus, despite its conserved amino acid sequence. The genes amt1 and ntcA (coding for an ammonium transporter and a global nitrogen regulator, respectively) show noncorrelated expression in Prochlorococcus under nitrogen stress; furthermore, high rates of organic nitrogen uptake have been observed. All of these unusual features could provide a physiological basis for the predominance of Prochlorococcus over Synechococcus in oligotrophic oceans.  相似文献   

13.
Local adaptation – typically recognized as higher values of fitness-related traits for native vs. non-native individuals when measured in the native environment - is common in natural populations because of pervasive spatial variation in the intensity and type of natural selection. Although local adaptation has been primarily studied in the context of biotic interactions, widespread variation in abiotic characteristics of environments suggests that local adaptation in response to abiotic factors should also be common. Potamopyrgus antipodarum, a freshwater New Zealand snail that is an important model system for invasion biology and the maintenance of sexual reproduction, exhibits local adaptation to parasites and rate of water flow. As an initial step to determining whether P. antipodarum are also locally adapted to phosphorus availability, we examined whether populations differ in their responses to phosphorus limitation. We found that field-collected juvenile P. antipodarum grew at a lower rate and reached an important size threshold more slowly when fed a relatively low vs. a relatively high- phosphorus diet. We also detected significant across-population variation in individual growth rate. A marginally significant population-by-dietary phosphorus interaction along with a two-fold difference across populations in the extent of suppression of growth by low phosphorus suggests that populations of P. antipodarum may differ in their response to phosphorus limitation. Local adaptation may explain this variation, with the implication that snails from lakes with relatively low phosphorus availability should be less severely affected by phosphorus limitation than snails from lakes with higher phosphorus availability.  相似文献   

14.
Prochlorococcus is a marine cyanobacterium that numerically dominates the mid-latitude oceans and is the smallest known oxygenic phototroph. Numerous isolates from diverse areas of the world's oceans have been studied and shown to be physiologically and genetically distinct. All isolates described thus far can be assigned to either a tightly clustered high-light (HL)-adapted clade, or a more divergent low-light (LL)-adapted group. The 16S rRNA sequences of the entire Prochlorococcus group differ by at most 3%, and the four initially published genomes revealed patterns of genetic differentiation that help explain physiological differences among the isolates. Here we describe the genomes of eight newly sequenced isolates and combine them with the first four genomes for a comprehensive analysis of the core (shared by all isolates) and flexible genes of the Prochlorococcus group, and the patterns of loss and gain of the flexible genes over the course of evolution. There are 1,273 genes that represent the core shared by all 12 genomes. They are apparently sufficient, according to metabolic reconstruction, to encode a functional cell. We describe a phylogeny for all 12 isolates by subjecting their complete proteomes to three different phylogenetic analyses. For each non-core gene, we used a maximum parsimony method to estimate which ancestor likely first acquired or lost each gene. Many of the genetic differences among isolates, especially for genes involved in outer membrane synthesis and nutrient transport, are found within the same clade. Nevertheless, we identified some genes defining HL and LL ecotypes, and clades within these broad ecotypes, helping to demonstrate the basis of HL and LL adaptations in Prochlorococcus. Furthermore, our estimates of gene gain events allow us to identify highly variable genomic islands that are not apparent through simple pairwise comparisons. These results emphasize the functional roles, especially those connected to outer membrane synthesis and transport that dominate the flexible genome and set it apart from the core. Besides identifying islands and demonstrating their role throughout the history of Prochlorococcus, reconstruction of past gene gains and losses shows that much of the variability exists at the “leaves of the tree,” between the most closely related strains. Finally, the identification of core and flexible genes from this 12-genome comparison is largely consistent with the relative frequency of Prochlorococcus genes found in global ocean metagenomic databases, further closing the gap between our understanding of these organisms in the lab and the wild.  相似文献   

15.
Through the fixation of atmospheric nitrogen and photosynthesis, marine diazotrophs play a critical role inthe global cycling of nitrogen and carbon. Crocosphaera watsonii is a recently described unicellular diazotroph that may significantly contribute to marine nitrogen fixation in tropical environments. One of the many factors that can constrain the growth and nitrogen fixation rates of marine diazotrophs is phosphorus bioavailability. Using genomic and physiological approaches, we examined phosphorus scavenging mechanisms in strains of C. watsonii from both the Atlantic and the Pacific. Observations from the C. watsonii WH8501 genome suggest that this organism has the capacity for high-affinity phosphate transport (e.g., homologs of pstSCAB) in low-phosphate, oligotrophic systems. The pstS gene (high-affinity phosphate binding) is present in strains isolated from both the Atlantic and the Pacific, and its expression was regulated by the exogenous phosphate supply in strain WH8501. Genomic observation also indicated a broad capacity for phosphomonoester hydrolysis (e.g., a putative alkaline phosphatase). In contrast, no clear homologs of genes for phosphonate transport and hydrolysis could be identified. Consistent with these genomic observations, C. watsonii WH8501 is able to grow on phosphomonoesters as a sole source of added phosphorus but not on the phosphonates tested to date. Taken together these data suggest that C. watsonii has a robust capacity for scavenging phosphorus in oligotrophic systems, although this capacity differs from that of other marine cyanobacterial genera, such as Synechococcus, Prochlorococcus, and Trichodesmium.  相似文献   

16.
Nitrogen and water addition reduce leaf longevity of steppe species   总被引:1,自引:0,他引:1  
Ren H  Xu Z  Huang J  Clark C  Chen S  Han X 《Annals of botany》2011,107(1):145-155

Background and aims

Changes in supplies of resources will modify plant functional traits. However, few experimental studies have addressed the effects of nitrogen and water variations, either singly or in combination, on functional traits.

Methods

A 2-year field experiment was conducted to test the effects of nitrogen and water addition on leaf longevity and other functional traits of the two dominant (Agropyron cristatum and Stipa krylovii) and three most common species (Cleistogenes squarrosa, Melilotoides ruthenica and Potentilla tanacetifolia) in a temperate steppe in northern China.

Key Results

Additional nitrogen and water increased leaf nitrogen content and net photosynthetic rate, and changed other measured functional traits. Leaf longevity decreased significantly with both nitrogen addition (–6 days in 2007 and –5·4 days in 2008; both P < 0·001) and watering (–13 days in 2007 and –9·9 days in 2008; both P < 0·001), and significant differences in leaf longevity were also found among species. Nitrogen and water interacted to affect leaf longevity and other functional traits. Soil water content explained approx. 70 % of the shifts in leaf longevity. Biomass at both species and community level increased under water and nitrogen addition because of the increase in leaf biomass production per individual plant.

Conclusions

The results suggest that additional nitrogen and water supplies reduce plant leaf longevity. Soil water availability might play a fundamental role in determining leaf longevity and other leaf functional traits, and its effects can be modified by soil nitrogen availability in semi-arid areas. The different responses of species to resource alterations may cause different global change ramifications under future climate change scenarios.  相似文献   

17.
The globally significant picocyanobacterium Prochlorococcus is the main primary producer in oligotrophic subtropical gyres. When phosphate concentrations are very low in the marine environment, the mol:mol availability of phosphate relative to the chemically similar arsenate molecule is reduced, potentially resulting in increased cellular arsenic exposure. To mediate accidental arsenate uptake, some Prochlorococcus isolates contain genes encoding a full or partial efflux detoxification pathway, consisting of an arsenate reductase (arsC), an arsenite-specific efflux pump (acr3) and an arsenic-related repressive regulator (arsR). This efflux pathway was the only previously known arsenic detox pathway in Prochlorococcus. We have identified an additional putative arsenic mediation strategy in Prochlorococcus driven by the enzyme arsenite S-adenosylmethionine methyltransferase (ArsM) which can convert inorganic arsenic into more innocuous organic forms and appears to be a more widespread mode of detoxification. We used a phylogenetically informed approach to identify Prochlorococcus linked arsenic genes from both pathways in the Global Ocean Sampling survey. The putative arsenic methylation pathway is nearly ubiquitously present in global Prochlorococcus populations. In contrast, the complete efflux pathway is only maintained in populations which experience extremely low PO4:AsO4, such as regions in the tropical and subtropical Atlantic. Thus, environmental exposure to arsenic appears to select for maintenance of the efflux detoxification pathway in Prochlorococcus. The differential distribution of these two pathways has implications for global arsenic cycling, as their associated end products, arsenite or organoarsenicals, have differing biochemical activities and residence times.  相似文献   

18.
Prochlorococcus is the numerically dominant photosynthetic organism throughout much of the world''s oceans, yet little is known about the ecology and genetic diversity of populations inhabiting tropical waters. To help close this gap, we examined natural Prochlorococcus communities in the tropical Pacific Ocean using a single-cell whole-genome amplification and sequencing. Analysis of the gene content of just 10 single cells from these waters added 394 new genes to the Prochlorococcus pan-genome—that is, genes never before seen in a Prochlorococcus cell. Analysis of marker genes, including the ribosomal internal transcribed sequence, from dozens of individual cells revealed several representatives from two uncultivated clades of Prochlorococcus previously identified as HNLC1 and HNLC2. While the HNLC clades can dominate Prochlorococcus communities under certain conditions, their overall geographic distribution was highly restricted compared with other clades of Prochlorococcus. In the Atlantic and Pacific oceans, these clades were only found in warm waters with low Fe and high inorganic P levels. Genomic analysis suggests that at least one of these clades thrives in low Fe environments by scavenging organic-bound Fe, a process previously unknown in Prochlorococcus. Furthermore, the capacity to utilize organic-bound Fe appears to have been acquired horizontally and may be exchanged among other clades of Prochlorococcus. Finally, one of the single Prochlorococcus cells sequenced contained a partial genome of what appears to be a prophage integrated into the genome.  相似文献   

19.
Growth limitation of phytoplankton and unicellular nitrogen (N2) fixers (diazotrophs) were investigated in the oligotrophic Western South Pacific Ocean. Based on change in abundances of nifH or 23S rRNA gene copies during nutrient-enrichment experiments, the factors limiting net growth of the unicellular diazotrophs UCYN-A (Group A), Crocosphaera watsonii, γ-Proteobacterium 24774A11, and the non-diazotrophic picocyanobacterium Prochlorococcus, varied within the region. At the westernmost stations, numbers were enhanced by organic carbon added as simple sugars, a combination of iron and an organic chelator, or iron added with phosphate. At stations nearest the equator, the nutrient-limiting growth was not apparent. Maximum net growth rates for UCYN-A, C. watsonii and γ-24774A11 were 0.19, 0.61 and 0.52 d−1, respectively, which are the first known empirical growth rates reported for the uncultivated UCYN-A and the γ-24774A11. The addition of N enhanced total phytoplankton biomass up to 5-fold, and the non-N2-fixing Synechococcus was among the groups that responded favorably to N addition. Nitrogen was the major nutrient-limiting phytoplankton biomass in the Western South Pacific Ocean, while availability of organic carbon or iron and organic chelator appear to limit abundances of unicellular diazotrophs. Lack of phytoplankton response to nutrient additions in the Pacific warm pool waters suggests diazotroph growth in this area is controlled by different factors than in the higher latitudes, which may partially explain previously observed variability in community composition in the region.  相似文献   

20.
Organisms limited by carbon, nitrogen or sulphur can reduce protein production costs by transitions to less costly amino acids, or by reducing protein expression. These alternative mechanisms of nutrient thrift might respond differently to selection, but this possibility remains untested. We hypothesized that relatively invariant sequence composition responds to long-term variation in nutrient concentrations, whereas dynamic expression profiles vary with nutrient predictability. Prolonged nutrient scarcity favours proteome-wide nutrient reduction. Under stable, nonfluctuating nutrient availability, reduction of nutrient content typically occurs in proteins upregulated when nutrient availability is low, e.g. assimilation and catabolism. We suggest that fluctuating nutrient availability favours mechanisms involving short-term downregulation of nutrient-rich proteins. We analysed protein nitrogen content in six high-light, low-nutrient adapted (HL) vs. six low-light, high-nutrient adapted (LL) Prochlorococcus (marine cyanobacteria) strains, alongside expression data under experimental nitrogen and phosphorus limitation in two strains, MED4 (HL) vs. MIT9313 (LL). HL strains contained less nitrogen, but DNA GC content confounded this relationship. While anabolic and catabolic proteins had normal nitrogen content, most strains showed reduced nitrogen in typical nitrogen stress response proteins. In the experimental data set, though, proteins upregulated under nitrogen limitation were nitrogen-poor only in MIT9313, not MED4. MIT9313 responded similarly to nitrogen and phosphorus limitation, with slow, sustained downregulation of nitrogen-rich ribosomal proteins. In contrast, under nitrogen but not phosphorus limitation, MED4 rapidly downregulated ribosomal proteins. MED4's specific, rapid nitrogen response suggests adaptation to fluctuating conditions, supporting previous work. Thus, we identify contrasting proteomic nitrogen thrift mechanisms within Prochlorococcus consistent with different nutrient regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号