首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

DNA repair is a cellular defence mechanism responding to DNA damage caused in large part by oxidative stress. There is a controversy with regard to the effect of red blood cells on DNA damage and cellular response.

Aim

To investigate the effect of red blood cells on H2O2-induced DNA damage and repair in human peripheral blood mononuclear cells.

Methods

DNA breaks were induced in peripheral blood mononuclear cells by H2O2 in the absence or presence of red blood cells, red blood cells hemolysate or hemoglobin. DNA repair was measured by 3H-thymidine uptake, % double-stranded DNA was measured by fluorometric assay of DNA unwinding. DNA damage was measured by the comet assay and by the detection of histone H2AX phosphorylation.

Results

Red blood cells and red blood cells hemolysate reduced DNA repair in a dose-dependent manner. Red blood cells hemolysate reduced % double-stranded DNA, DNA damage and phosphorylation of histone H2AX. Hemoglobin had the same effect as red blood cells hemolysate on % double-stranded DNA.

Conclusion

Red blood cells, via red blood cells hemolysate and hemoglobin, reduced the effect of oxidative stress on peripheral blood mononuclear cell DNA damage and phosphorylation of histone H2AX. Consequently, recruitment of DNA repair proteins diminished with reduction of DNA repair. This suggests that anemia predisposes to increased oxidative stress induced DNA damage, while a higher hemoglobin level provides protection against oxidative-stress-induced DNA damage.  相似文献   

2.
This study characterized peripheral blood mononuclear cells (PBMC) in terms of their potential in cartilage repair and investigated their ability to improve the healing in a pre-clinical large animal model. Human PBMCs were isolated with gradient centrifugation and adherent PBMC’s were evaluated for their ability to differentiate into adipogenic, chondrogenic and osteogenic lineages and also for their expression of musculoskeletal genes. The phenotype of the PBMCs was evaluated using Stro-1, CD34, CD44, CD45, CD90, CD106, CD105, CD146 and CD166 cell surface markers. Osteochondral defects were created in the medial femoral condyle (MFC) of 24 Welsh mountain sheep and evaluated at a six month time point. Four cell treatment groups were evaluated in combination with collagen-GAG-scaffold: (1) MSC alone; (2) MSCs and PBMCs at a ratio of 20:1; (3) MSCs and PBMC at a ratio of 2:1 and (4) PBMCs alone. Samples from the surgical site were evaluated for mechanical properties, ICRS score and histological repair. Fresh PBMC samples were 90% positive for hematopoietic cell surface markers and negative for the MSC antibody panel (<1%, p = 0.006). However, the adherent PBMC population expressed mesenchymal stem cell markers in hypoxic culture and lacked CD34/45 positive cells (<0.2%). This finding demonstrated that the adherent cells had acquired an MSC-like phenotype and transformed in hypoxia from their original hematopoietic lineage. Four key genes in muskuloskeletal biology were significantly upregulated in adherent PBMCs by hypoxia: BMP2 4.2-fold (p = 0.0007), BMP6 10.7-fold (p = 0.0004), GDF5 2.0-fold (p = 0.002) and COL1 5.0-fold (p = 0.046). The monolayer multilineage analysis confirmed the trilineage mesenchymal potential of the adherent PBMCs. PBMC cell therapy was equally good as bone marrow MSC therapy for defects in the ovine large animal model. Our results show that PBMCs support cartilage healing and oxygen tension of the environment was found to have a key effect on the derivation of a novel adherent cell population with an MSC-like phenotype. This study presents a novel and easily attainable point-of-care cell therapy with PBMCs to treat osteochondral defects in the knee avoiding any cell manipulations outside the surgical room.  相似文献   

3.

Objectives

To determine the contribution of peripheral blood mononuclear cells’ (PBMCs) HIV DNA levels to HIV-associated dementia (HAD) and non-demented HIV-associated neurocognitive disorders (HAND) in chronically HIV-infected adults with long-term viral suppression on combined antiretroviral treatment (cART).

Methods

Eighty adults with chronic HIV infection on cART (>97% with plasma and CSF HIV RNA <50 copies/mL) were enrolled into a prospective observational cohort and underwent assessments of neurocognition and pre-morbid cognitive ability at two visits 18 months apart. HIV DNA in PBMCs was measured by real-time PCR at the same time-points.

Results

At baseline, 46% had non-demented HAND; 7.5% had HAD. Neurocognitive decline occurred in 14% and was more likely in those with HAD (p<.03). Low pre-morbid cognitive ability was uniquely associated with HAD (p<.05). Log10 HIV DNA copies were stable between study visits (2.26 vs. 2.22 per 106 PBMC). Baseline HIV DNA levels were higher in those with lower pre-morbid cognitive ability (p<.04), and higher in those with no ART treatment during HIV infection 1st year (p = .03). Baseline HIV DNA was not associated with overall neurocognition. However, % ln HIV DNA change was associated with decline in semantic fluency in unadjusted and adjusted analyses (p = .01-.03), and motor-coordination (p = .02-.12) to a lesser extent.

Conclusions

PBMC HIV DNA plays a role in HAD pathogenesis, and this is moderated by pre-morbid cognitive ability in the context of long-term viral suppression. While the HIV DNA levels in PBMC are not associated with current non-demented HAND, increasing HIV DNA levels were associated with a decline in neurocognitive functions associated with HAND progression.  相似文献   

4.
Illumination of Chinese hamster cells with fluorescent light after 5-bromodeoxyuridine incorporation leads to extensive single-strand breakage in the DNA of the exposed cells. The rate of production of single-strand breaks is dependent on the extent to which thymine is replaced by 5-bromouracil. At least some of the breaks observed with alkaline gradients are probably produced in vivo and are probably not contingent upon alkaline hydrolysis since breakage can be demonstrated with neutral gradients also. Cells are able to rejoin most of the single-strand breaks within 60 min; however, damage to the DNA-containing material (the “complex”) initially released from cells is repaired more slowly. Cysteamine protects against single-strand breakage with a dose-modifying factor of 2.8. A comparison is made between the production of single-strand breaks by fluorescent light and X-rays, and the significance of such breaks relative to cell survival is discussed.  相似文献   

5.
Herpes simplex virus‐1 (HSV) or varicella zoster virus (VZV) DNA was detected by nested polymerase chain reaction in peripheral blood mononuclear cells of patients with Meniere's disease (one of 28 patients for HSV‐1,2 of 28 patients for VZV) during acute illness (within 5 days after onset). On the other hand, neither HSV‐1 DNA or VZV DNA was detected in PBMCs of 50 age‐ and sex‐matched healthy individuals and 50 pregnant women. These findings may imply that reactivation of HSV‐1 or VZV may be associated with the development of some cases of Meniere's disease.  相似文献   

6.
The capacity to withstand and repair DNA damage differs among species and plays a role in determining an organism''s resistance to genotoxicity, life history, and susceptibility to disease. Environmental stressors that affect organisms at the genetic level are of particular concern in ecotoxicology due to the potential for chronic effects and trans-generational impacts on populations. Echinoderms are valuable organisms to study the relationship between DNA repair and resistance to genotoxic stress due to their history and use as ecotoxicological models, little evidence of senescence, and few reported cases of neoplasia. Coelomocytes (immune cells) have been proposed to serve as sensitive bioindicators of environmental stress and are often used to assess genotoxicity; however, little is known about how coelomocytes from different echinoderm species respond to genotoxic stress. In this study, DNA damage was assessed (by Fast Micromethod) in coelomocytes of four echinoderm species (sea urchins Lytechinus variegatus, Echinometra lucunter lucunter, and Tripneustes ventricosus, and a sea cucumber Isostichopus badionotus) after acute exposure to H2O2 (0–100 mM) and UV-C (0–9999 J/m2), and DNA repair was analyzed over a 24-hour period of recovery. Results show that coelomocytes from all four echinoderm species have the capacity to repair both UV-C and H2O2-induced DNA damage; however, there were differences in repair capacity between species. At 24 hours following exposure to the highest concentration of H2O2 (100 mM) and highest dose of UV-C (9999 J/m2) cell viability remained high (>94.6±1.2%) but DNA repair ranged from 18.2±9.2% to 70.8±16.0% for H2O2 and 8.4±3.2% to 79.8±9.0% for UV-C exposure. Species-specific differences in genotoxic susceptibility and capacity for DNA repair are important to consider when evaluating ecogenotoxicological model organisms and assessing overall impacts of genotoxicants in the environment.  相似文献   

7.
目的 研究不同时间诱导X射线照射的淋巴细胞进入细胞周期DNA损伤修复与凋亡的影响.方法 X射线(0.5 Gy)作用于正常人外周血淋巴细胞,以照射后不同时间点(0、4 h)分别加入PHA并分成两组,即照射后0 h加PHA组(A组)和照射后4 h加PHA组(B组),再分别培养0、0.5、2 h,用流式细胞术和免疫印迹法检测A组和B组γ-H2AX蛋白的表达,Annexin-V/PI法分析A、B两组的细胞凋亡率.结果 流式细胞术及免疫印迹结果均显示A组的γ-H2AX蛋白表达高于B组(P<0.05),且均先升高后降低.A组细胞凋亡率亦大于B组.结论 不同时间诱导被打击的淋巴细胞进入周期其可能发生DNA修复并同时伴随细胞凋亡的发生.  相似文献   

8.
DNA Damage and Repair in Eukaryotic Cells   总被引:3,自引:0,他引:3       下载免费PDF全文
R. B. Painter 《Genetics》1974,78(1):139-148
DAMAGE IN DNA AFTER IRRADIATION CAN BE CLASSIFIED INTO FIVE KINDS: base damage, single-strand breaks, double-strand breaks, DNA-DNA cross-linking, and DNA-protein cross-linking. Of these, repair of base damage is the best understood. In eukaryotes, at least three repair systems are known that can deal with base damage: photoreactivation, excision repair, and post-replication repair. Photoreactivation is specific for UV-induced damage and occurs widely throughout the biosphere, although it seems to be absent from placental mammals. Excision repair is present in prokaryotes and in animals but does not seem to be present in plants. Post-replication repair is poorly understood. Recent reports indicate that growing points in mammalian DNA simply skip past UV-induced lesions, leaving gaps in newly made DNA that are subsequently filled in by de novo synthesis. Evidence that this concept is oversimplified or incorrect is presented.-Single-strand breaks are induced by ionizing radiation but most cells can rapidly repair most or all of them, even after supralethal doses. The chemistry of the fragments formed when breaks are induced by ionizing radiation is complex and poorly understood. Therefore, the intermediate steps in the repair of single-strand breaks are unknown. Double-strand breaks and the two kinds of cross-linking have been studied very little and almost nothing is known about their mechanisms for repair.-The role of mammalian DNA repair in mutations is not known. Although there is evidence that defective repair can lead to cancer and/or premature aging in humans, the relationship between the molecular defects and the diseased state remains obscure.  相似文献   

9.

Background

Enoxaparin, a low-molecular-weight heparin, is known to possess anti-inflammatory properties. However, its clinical exploitation as an anti-inflammatory agent is hampered by its anticoagulant effect and the associated risk of bleeding.

Objective

The aim of the current study was to examine the ability of non-anticoagulant fractions of enoxaparin to inhibit the release of key inflammatory cytokines in primed peripheral blood mononuclear cells derived from allergic mild asthmatics.

Methods

Peripheral blood mononuclear cells from allergic asthmatics were activated with phytohaemag glutinin (PHA), concanavalin-A (ConA) or phorbol 12-myristate 13-acetate (PMA) in the presence or absence of enoxaparin fractions before cytokine levels were quantified using specific cytokine bead arrays. Together with nuclear magnetic resonance analysis,time-dependent and target-specific effects of enoxaparin fractions were used to elucidate structural determinants for their anti-inflammatory effect and gain mechanistic insights into their anti-inflammatory activity.

Results

Two non-anticoagulant fractions of enoxaparin were identified that significantly inhibited T-cell activation. A disaccharide fraction of enoxaparin inhibited the release of IL-4, IL-5, IL-13 and TNF-α by more than 57% while a tetrasaccharide fraction was found to inhibit the release of tested cytokines by more than 68%. Our data suggest that the observed response is likely to be due to an interaction of 6-O-sulfated tetrasaccharide with cellular receptor(s).

Conclusion and Clinical Relevance

The two identified anti-inflammatory fractions lacked anticoagulant activity and are therefore not associated with risk of bleeding. The findings highlight the potential therapeutic use of enoxaparin-derived fractions, in particular tetrasaccharide, in patients with chronic inflammatory disorders.  相似文献   

10.
《PloS one》2015,10(5)
BackgroundIgG4-related disease (IgG4-RD) is a new clinical entity of unknown etiology characterized by elevated serum IgG4 and tissue infiltration by IgG4-positive plasma cells. Although aberrancies in acquired immune system functions, including increases in Th2 and Treg cytokines observed in patients with IgG4-RD, its true etiology remains unclear. To investigate the pathogenesis of IgG4-RD, this study compared the expression of genes related to innate immunity in patients with IgG4-RD and healthy controls.ResultsDNA microarray analysis identified 21 genes that showed a greater than 3-fold difference in expression between IgG4-RD patients and healthy controls and 30 genes that showed a greater than 3-fold change in IgG4-RD patients following steroid therapy. Candidate genes related to innate immunity, including those encoding Charcot–Leyden crystal protein (CLC), membrane-spanning 4-domain subfamily A member 3 (MS4A3), defensin alpha (DEFA) 3 and 4, and interleukin-8 receptors (IL8R), were validated by real-time RT-PCR. Expression of all genes was significantly lower in IgG4-RD patients than in healthy controls. Steroid therapy significantly increased the expression of DEFA3, DEFA4 and MS4A3, but had no effect on the expression of CLC, IL8RA and IL8RB.ConclusionsThe expression of genes related to allergy or innate immunity, including CLC, MS4A3, DEFA3, DEFA4, IL8RA and IL8RB, was lower in PBMCs from patients with IgG4-RD than from healthy controls. Although there is the limitation in the number of patients applied in DNA microarray, impaired expression of genes related to innate immunity may be involved in the pathogenesis of IgG4-RD as well as in abnormalities of acquired immunity.  相似文献   

11.
Cell-mediated immune response to Japanese encephalitis virus (JEV) and its purified envelope (E) protein was measured in 45 laboratory confirmed JE patients using a proliferation assay of peripheral blood mononuclear cells (PBMC). In parallel, JEV-specific IgM antibodies were measured by ELISA. No correlation was observed between the antibody response and results of the lymphocyte proliferation assay. Only 11 of the 42 patients positive in the antibody test were positive in the proliferation assay, and PBMC from 14/45 (31%) patients did not respond to either phytohemagglutinin and to JEV and/or its purified E protein antigen. No correlation was observed between the cell-mediated immune response and the final clinical outcome (fatality vs. recovery).  相似文献   

12.
Peripheral blood mononuclear cells (PBMCs) are main actors in inflammatory processes and linked to many diseases, including rheumatoid arthritis, atherosclerosis, asthma, HIV and cancer. Moreover, they seem an interesting ‘surrogate tissue’ that can be used in biomarker discovery. In order to get a good experimental design for quantitative expression studies, the knowledge of the interindividual variation is an essential part. Therefore, PBMCs were isolated from 24 healthy volunteers (15 males, 9 females, ages 63–86) with no clinical signs of inflammation. The extracted proteins were separated using the two dimensional difference in gel electrophoresis technology (2D-DIGE), and the gel images were processed with the DeCyder 2D software. Protein spots present in at least 22 out of 24 healthy volunteers were selected for further statistical analysis. Determination of the coefficient of variation (CV) of the normalized spot volume values of these proteins, reveals that the total variation of the PBMC proteome varies between 12,99% to 148,45%, with a mean value of 28%. A supplemental look at the causes of technical variation showed that the isolation of PBMCs from whole blood is the factor which influences the experimental variance the most. This isolation should be handled with extra care and an additional washing step would be beneficial. Knowing the extent of variation, we show that at least 10 independent samples per group are needed to obtain statistical powerful data. This study demonstrates the importance of considering variance of a human population for a good experimental design for future protein profiling or biomarker studies.  相似文献   

13.
Induced multipotent stem (iMS) cells are originated from somatic cells and become multipotent by genetic and/or epigenetic modifications. Previous studies have shown that the fish oocytes extracts (FOE) can induce skin fibroblast cells into iMS cells. In this study, we aim to determine whether FOE can similarly induce mouse peripheral blood mononuclear cells (PBMCs) into the iMS state and if so, whether they can survive longer when they are transplanted into the irradiation female mice. PBMCs of GFP-transgenic male mice were cultured and transiently reprogrammed by FOE. They were deemed reaching the iMS state after detection of expression of stem cell markers. The iMS-like PBMCs were transplanted into female C57BL mice by tail vein injection. The spleen wet weights as well as numbers of colonies of the recipient mice were examined. The results showed the spleen wet weights and numbers of spleen colonies of FOE-induced group were all significantly higher than those of the non-induced group and negative control group. On day 90 after transplantation, FISH analysis detected the presence of Y chromosome in the induced group, but not of the other groups. The current findings demonstrate that FOE-induced PBMCs are able to survive longer in irradiated female mice.  相似文献   

14.
Periodic acid Schiff (PAS) staining is an immunohistochemical technique used on muscle biopsies and as a diagnostic tool for blood samples. Polysaccharides such as glycogen, glycoproteins, and glycolipids stain bright magenta making it easy to enumerate positive and negative cells within the tissue. In muscle cells PAS staining is used to determine the glycogen content in different types of muscle cells, while in blood cell samples PAS staining has been explored as a diagnostic tool for a variety of conditions. Blood contains a proportion of white blood cells that belong to the immune system. The notion that cells of the immune system possess glycogen and use it as an energy source has not been widely explored. Here, we describe an adapted version of the PAS staining protocol that can be applied on peripheral blood mononuclear immune cells from human venous blood. Small cells with PAS-positive granules and larger cells with diffuse PAS staining were observed. Treatment of samples with amylase abrogates these patterns confirming the specificity of the stain. An alternate technique based on enzymatic digestion confirmed the presence and amount of glycogen in the samples. This protocol is useful for hematologists or immunologists studying polysaccharide content in blood-derived lymphocytes.  相似文献   

15.
轮状病毒(Rotavirus,RV)是引起急性肠胃炎的主要病原体,分析RV感染患者的人外周血单个核细胞(Peripheral blood mononuclear cell,PBMC)中差异表达基因(Differentially expressed genes,DEGs)有利于探讨人PBMC在清除RV中的作用。为此,本研究采集2019年2月-2019年6月长春儿童医院中RV感染患者和健康儿童血液,分离PBMC,通过转录组测序(RNA sequencing,RNA-seq)技术比较RV感染患者与健康儿童之间的RNA表达图谱,借助基因本体论(Gene Ontology,GO)数据库功能富集分析、京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)、Reactome通路富集分析DEGs,使用实时荧光定量PCR(Real-time quantitative PCR,qPCR)技术进行验证。结果显示,与健康对照组相比,RV感染轻症患者PBMC中有1619个DEGs;重症患者PBMC中有2816个DEGs,主要与干扰素(Interferon,IFN)反应、中性粒细胞、溶酶体、核小体、染色质等相关。qPCR验证轻症患者干扰素刺激基因(IFN-stimulated genes,ISGs)15表达上调,白介素(Interleukin,IL)1β表达下调;重症患者IL15、ISG15表达上调,IL1β表达下调,与转录组结果相一致。本研究提示,RV感染可能激活人I型和II型IFNs反应抵御病毒感染,但也会抑制溶酶体相关基因,对细胞自噬过程产生影响。  相似文献   

16.
DNA damage induced by numerous exogenous or endogenous factors may have irreversible consequences on the cell leading to cell cycle arrest, senescence and cell death. The DNA damage response (DDR) is powerful signaling machinery triggered in response to DNA damage, to provide DNA damage recognition, signaling and repair. Most anticancer drugs induce DNA damage, and DNA repair in turn attenuates therapeutic efficiency of those drugs. Approaches delaying DNA repair are often used to increase efficiency of treatment. Recent data show that ubiquitin-proteasome system is essential for signaling and repair of DNA damage. However, mechanisms providing regulation of proteasome intracellular localization, activity, and recruitment to DNA damage sites are elusive. Even less investigated are the roles of extranuclear signaling proteins in these processes. In this study, we report the involvement of the serine protease urokinase-type plasminogen activator receptor (uPAR) in DDR-associated regulation of proteasome. We show that in vascular smooth muscle cells (VSMC) uPAR activates DNA single strand break repair signaling pathway. We provide evidence that uPAR is essential for functional assembly of the 26S proteasome. We further demonstrate that uPAR mediates DNA damage-induced phosphorylation, nuclear import, and recruitment of the regulatory subunit PSMD6 to proteasome. We found that deficiency of uPAR and PSMD6 delays DNA repair and leads to decreased cell survival. These data may offer new therapeutic approaches for diseases such as cancer, cardiovascular and neurodegenerative disorders.  相似文献   

17.
《生命科学研究》2014,(5):418-422
采用流式细胞术双标法检测拟诊免疫相关性全血细胞减少症患者(A组)、非免疫相关性恶性血液病患者(B组)及正常人(正常对照组)的骨髓单个核细胞结合的自身抗体,同时检测B组、确诊免疫相关性全血细胞减少症(C组)及正常对照组外周血B淋巴细胞及CD5+B淋巴细胞比率;A组中16例骨髓造血细胞自身抗体阳性,阳性率88.88%;B组1例骨髓造血细胞自身抗体阳性,阳性率9.09%。C组外周血B淋巴细胞、CD5+B淋巴细胞比率显著高于B组及正常对照组(P均<0.05),而正常对照组外周血B淋巴细胞、CD5+B淋巴细胞显著高于B组(P均<0.05);IRP患者骨髓单个核细胞自身抗体表达显著增高,B淋巴细胞总数及CD5+B淋巴细胞数量显著增高可能是IRP发病的重要因素之一;利用流式细胞术检测骨髓造血细胞自身抗体及B淋巴细胞数可以为IRP提供科学可靠的依据,优于骨髓Coomb’s实验。  相似文献   

18.
Lassa virus (LASV) is the causative agent of Lassa Fever and is responsible for several hundred thousand infections and thousands of deaths annually in West Africa. LASV and the non-pathogenic Mopeia virus (MOPV) are both rodent-borne African arenaviruses. A live attenuated reassortant of MOPV and LASV, designated ML29, protects rodents and primates from LASV challenge and appears to be more attenuated than MOPV. To gain better insight into LASV-induced pathology and mechanism of attenuation we performed gene expression profiling in human peripheral blood mononuclear cells (PBMC) exposed to LASV and the vaccine candidate ML29. PBMC from healthy human subjects were exposed to either LASV or ML29. Although most PBMC are non-permissive for virus replication, they remain susceptible to signal transduction by virus particles. Total RNA was extracted and global gene expression was evaluated during the first 24 hours using high-density microarrays. Results were validated using RT-PCR, flow cytometry and ELISA. LASV and ML29 elicited differential expression of interferon-stimulated genes (ISG), as well as genes involved in apoptosis, NF-kB signaling and the coagulation pathways. These genes could eventually serve as biomarkers to predict disease outcomes. The remarkable differential expression of thrombomodulin, a key regulator of inflammation and coagulation, suggests its involvement with vascular abnormalities and mortality in Lassa fever disease.  相似文献   

19.
20.
The purpose of this study is to evaluate cytokine expression by peripheral blood mononuclear cells (PBMC) from stage I lung cancer patients and to confirm these expression patterns by exposing PBMCs to lung cancer cells in vitro. Five altered cytokines in stage I lung cancer patients (CCL3, IL8, IL1β, CXCL10, sIL2Rα) were identified in plasma from subjects (n = 15) before and after resection using a 30-plex panel protein assay. Gene expression studies using quantitative RT-qPCR were performed on PBMCs from stage I lung cancer patients (n = 62) before and after resection, and compared to non-cancer patients (n = 32) before and after surgery for benign disease. Co-culture experiments that exposed healthy donor PBMCs to lung cancer cells in vitro were performed to evaluate the effect on PBMC cytokine expression. PBMC gene expression of CCL3, IL8 and IL1β was higher in lung cancer patients compared to the same patients at each of four sequential timepoints after removal of their tumors, while CXCL10 and IL2Rα were essentially unchanged. This pattern was also detected when lung cancer patients were compared to non-cancer patients. When non-cancer patients underwent surgery for benign diseases, these cytokine expression changes were not demonstrable. Lung cancer cell lines, but not benign bronchial epithelial cells, induced similar changes in cytokine gene and protein expression by healthy donor PBMCs in an in vitro co-culture system. We conclude that PBMCs from stage I lung cancer patients possess distinct cytokine expression patterns compared to both non-cancer patients, and lung cancer patients following tumor removal. These expression patterns are replicated by healthy donor PBMCs exposed to lung cancer cell lines, but not benign bronchial epithelial cells in vitro. These findings have implications for understanding the immune response to lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号