首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Khokhlov AN 《Ontogenez》2003,34(5):382-389
For the most part, research in the area of cytogerontology, i.e., investigation of the mechanisms of aging in the experiments on cultured cells, is carried out using the "Hayflick's model". More than forty years have passed since the appearance of that model, and during this period of time, very much data were obtained on its basis. These data contributed significantly to our knowledge of the behavior of both animal and human cultured cells. Specifically, we already know of the mechanisms underlying the aging in vitro. On the other hand, in my opinion, little has changed in our knowledge of the aging of the whole organism. In all likelihood, this can be explained by that the Hayflick's model is, like many others used in the experimental gerontology, correlative, i.e. based on a number of detected correlations. In the case of Hayflick's model, these are correlations between the mitotic potential of cells (cell population doubling potential) and some "gerontological" parameters and indices: species life-span, donor age, evidence of progeroid syndromes, etc., as well as various changes of normal (diploid) cells during long-term cultivation and during aging of the organism. It is, however, well known that very frequently a good correlation has nothing to do with the essence (gist) of the phenomenon. For example, we do know that the amount of gray hair correlates quite well with the age of an individual but is in no way related to the mechanisms of his/her aging and probability of death. In this case, the absence of cause-effect relationships is evident, which are, at the same time, indispensable for the development of gist models. These models, as distinct from the correlative ones, are based on a certain concept of aging. In the case of Hayflick's model, such a concept is absent: we cannot explain, using the "Hayflick's limit", why our organism ages. This conclusion was convincingly confirmed by the discovery of telomere mechanism which determines the aging of cells in vitro. That discovery initiated the appearance of theories attempting to explain the process of aging in vivo also on its basis. However, it has become clear that the mechanisms of aging of the entire organism, located, apparently, in its postmitotic cells, such as neurons or cardiomyocytes, cannot be explained in the framework of this approach. Hence, we believe that it is essential to develop "gist" models of aging using cultured cells. The mechanisms of cell aging in such models should be similar to the mechanisms of cell aging in the entire organism. Our "stationary phase aging" model could be one of such models, which is based on the assumption of the leading role of cell proliferation restriction in the processes of aging. We assume that the accumulation of "senile" damage is caused by the restriction of cell proliferation either due to the formation of differentiated cell populations during development (in vivo) or to the existence of saturation density phenomenon (in vitro). Cell proliferation changes themselves do not induce aging, they only lead to the accumulation of macromolecular defects, which, in turn, lead to the deterioration of tissues, organs, and, eventually, of the entire organism, increasing the probability of its death. Within the framework of our model, we define cell aging as the accumulation in a cell population of various types of damage identical to the damage arising in senescing multicellular organism. And, finally, it is essential to determine how the cell is dying and what the death of the cell is. These definitions will help to draw real parallels between the "genuine" aging of cells (i.e., increasing probability of their death with "age") and the aging of multicellular organisms.  相似文献   

2.
Laboratory models have suggested a link between metabolism and life span in vertebrates, and it is well known that the evolution of specific life histories can be driven by metabolic factors. However, little is known regarding how the adoption of specific life-history strategies can shape aging and life span in populations facing different energetic demands from either a theoretical or a mechanistic viewpoint but significant insight can be gained by using a comparative approach. Comparative biology plays several roles in our understanding of the virtually ubiquitous phenomenon of aging in animals. First, it provides a critical evaluation of broad hypotheses concerning the evolutionary forces underlying the modulation of aging rate. Second, it suggests mechanistic hypotheses about processes of aging. Third, it illuminates particularly informative species because of their exceptionally slow or rapid aging rates to be interrogated about potentially novel mechanisms of aging. Although comparative biology has played a significant role in research on aging for more than a century, the new comparative biology of aging is poised to dwarf those earlier contributions, because: (1) new cellular and molecular techniques for investigating novel species are in place and more are being continually generated, (2) molecular systematics has resolved the phylogenetic relationships among a wide range of species, which allow for the implementation of analytic tools specialized for comparative biology, and (3) in addition to facilitating the construction of accurate phylogenies, the dramatic acceleration in DNA-sequencing technology is providing us with new tools for a comparative genomic approach to understanding aging.  相似文献   

3.
Khokhlov AN 《Tsitologiia》2002,44(12):1143-1148
The overwhelming majority of research in the field of cytogerontology (i.e. investigating mechanisms of aging in experiments with cultured cells) has been done using the widely applied Hayflick's model. More than 40 years have passed since the appearance of the model, and during this time numerous data were obtained on its basis. The data significantly contributed to our knowledge of the behavior of cultured animal and human cells. In particular, we know enough about the in vitro aging phenomenon. But in my opinion, little has changed in our knowledge of aging in the whole organism. This may be, presumably, because Hayflich's model, like many other models used in experimental gerontology, is correlative, i.e. based on a great variety of detected correlations. In Hayflick's model these are correlations between the cell mitotic potential (cell population doubling potential) and the number of "gerontological" parameters and indices, such as the species life span, donor's age, evidence of progeroid syndromes, etc, and also correlations between various changes of normal (diploid) cells during a long-term cultivation and in the course of organismal aging. However, it is well known that a good correlation does not frequently have anything in common with the essence (gist) of the phenomenon under investigation. For example, the amount of grey hair in the individual is known to excellently correlate with his or her age, being, however, in no way associated with mechanisms of aging or probability of death. In this case, the absence of cause-effect relationships is evident. But it is these particular relationships that are totally indispensable for gist models developing. Such models, different from the correlative ones, are based on a definite concept of aging phenomenon. With the Hayflick's model, such a concept is absent, since using "Hayflick's limit" one cannot explain why the human organism is aging eventually. This can be exemplified by a discovery of a telomere mechanism, which is claimed to determine cell aging in vitro. This discovery triggered an outburst of theories aimed to explain on its basis as well the process of aging in vivo. However, now it is clear that mechanisms of the whole organism aging, hidden, presumably, in its postmitotic cells (neurons or cardiomyocytes) cannot be accounted for by this approach. In view of all stated above, we consider as indispensable the elaboration of "gist" models of aging using cultured cells. Mechanism of cell aging in these models must be similar to those in the whole organism. We believe that one of such models may be our "stationary phase aging" model, based on an assumption of the leading role of cell proliferation restriction in aging. We assume that accumulation of "senile" damage may by caused by the restriction of cell proliferation due to both the formation of differentiated cell populations in the course of development, and the existence of saturation density phenomenon (in vitro). Cell proliferation changes by themselves do not induce any aging processes, but lead only to accumulating macromolecular defects, which in their turn generate deterioration of tissues, organs, and eventually of the whole organism, thus increasing the probability of its death. Within the framework of our model, we define cell aging as the accumulation in a cell population of different types of damage identical to the damage arising in senscencing multicellular organism. And finally, we consider as very important the future studies aimed to determine the process of cell dying and cell death in general. Availability of such definitions would help to draw real parallels between the "genuine" cell aging (i.e. the increased probability of cell destruction with "age") and aging of the multicellular organism.  相似文献   

4.
师范院校生物教育实习现状调查与思考   总被引:3,自引:0,他引:3  
陈忠 《生物学杂志》2005,22(3):54-56
通过对师范院校生物教育实习现状调查,了解基础教育改革深化背景下的生物教育实习模式、实习学校生物教育状况及生物教育实习生存在的问题和困惑等,并对高师院校课程设置、教育实习管理等问题进行反思,为高师院校生物教育实习和课程设计提供一些借鉴。  相似文献   

5.
SYNOPSIS: Traditionally, historians have stressed the influenceof European laboratories on the development of American marinestations. While there is some justification for this interpretation,more attention must be directed at the original teaching imperativefor marine studies. Several marine stations emerged in the 1870swith no direct influence from Europe and with a complete commitmentto the education of secondary school teachers. Later in thecentury and early in the twentieth century this same patternwas repeated at several locations on both the east coast andthe west coast. All of these institutions were designed to presenta new pedagogical approach for biology in the United States.Originally as adjuncts to natural history museums and societiesand then as important innovations to teach laboratory methodsin American colleges and universities, marine biology stationsdeveloped research options only secondary to their primary educationalorientation.  相似文献   

6.
随着全球老龄化时代的到来,衰老和衰老相关疾病带来的健康问题日益突出。如何最大限度地维持老龄人口健康、干预衰老相关疾病并延缓衰老的发生对于医疗系统、科研机构乃至整个社会都是巨大的挑战。目前,对于衰老的分子机制研究已经有长足的进步,对于衰老进程的生物学和遗传学机制已有突破性的认识,对于衰老相关疾病的发病机制也有了深刻的理解。但这些研究成果还远远达不到能够延缓人类衰老并遏制衰老相关疾病的发生的要求。该文将从衰老的分子机制和干预手段这两个方面入手,综述衰老的理论研究和实际应用中的主要成果和最新进展。  相似文献   

7.
8.
Red blood cells (RBCs) during microcirculation, aging and storage, lose N-acetylneuraminic acid (NANA) and other biomaterials thereby altering cell structures, some properties and functions. Such cell damage very likely underlies the serious adverse effects of blood transfusion. However, a controversy has remained since 1961-1977 as to whether with aging, the RBCs, suffering loss of NANA, do have a decreased charge density. Any correlation between the changes in the cell properties with cell aging is also not clear. Therefore, to remove the ambiguity and uncertainty, we carried out multiparameteric studies on Percoll fractions of blood of 38 volunteers (lightest-young-Y-RBCs, densest-old-O-RBCs, two middle fractions).We found that there were striking differences between the properties of Y-RBCs and O-RBCs. The ζ-potential of Y-RBCs decreased gradually with aging. Studies in parallel on RBC fractions incubated with both positively charged quantum dots and Sambucus Nigra-fluorescein isothiocyanate (FITC) along with their ζ-potentials provide for the first time direct visual evidence about the lesser amount of charge density and NANA on O-RBCs, and a collinear decrease in their respective ζ-potentials. Close correlation was found between the surface charge on an aging RBC and its structure and functions, from the cell morphology, the membrane deformability to the intracellular Hb structure and oxidation ability. This quantitative approach not only clarifies the picture but also has implications in biology and medicine.  相似文献   

9.
The objective of the courses which this syllabus describes is to expose developmental biologists to embryo culture and embryo manipulation techniques and applications in quantitative analyses. The laboratory program complements classroom teaching by exposure to both inductive and deductive methodologies. Developmental biology teaching requires good background in cell biology, molecular biology and genetics. Developmental biology research requires computer literacy and an aptitude for quantitative methodology and graphics.  相似文献   

10.
Drosophila melanogaster has emerged as an important model system for the study of both stem cell biology and aging. Much is known about how molecular signals from the somatic niche regulate adult stem cells in the germline, and a variety of environmental factors as well as single point mutations have been shown to affect lifespan. Relatively little is known, however, about how aging affects specific populations of cells, particularly adult stem cells that may be susceptible to aging-related damage. Here we show that male germline stem cells (GSCs) are lost from the stem cell niche during aging, but are efficiently replaced to maintain overall stem cell number. We also find that the division rate of GSCs slows significantly during aging, and that this slowing correlates with a reduction in the number of somatic hub cells that contribute to the stem cell niche. Interestingly, slowing of stem cell division rate was not observed in long-lived methuselah mutant flies. We finally investigated whether two mechanisms that are thought to be used in other adult stem cell types to minimize the effects of aging were operative in this system. First, in many adult tissues stem cells exhibit markedly fewer cell cycles relative to transit-amplifying cells, presumably protecting the stem cell pool from replication-associated damage. Second, at any given time not all stem cells actively cycle, leading to 'clonal succession' from the reserve pool of initially quiescent stem cells. We find that neither of these mechanisms is used in Drosophila male GSCs.  相似文献   

11.
In 1990, following an idea arising from an Inserm study section on aging, the Dipl?me d'études approfondies (DEA) de Biologie du vieillissement was created. Since then, more than 300 students have followed these courses which cover the cellular mechanisms of aging and associated diseases, from basic causes of aging to CNS and sensory organs aging, as well as nutritional aspects, sarcopenia and osteoporosis, vascular and neuroendocrine aging. More than 150 thesis have been defended and more than a quarter of students has been recruited on permanent positions in French universities and research institutions (10 %) and hospitals (16 %). Since its creation, one of the particularities of the DEA was the formal links between academia and industry since teaching takes place on private laboratory settings.  相似文献   

12.
To address the different learning styles of students, and because students can access animation from off-campus computers, the use of digital animation in teaching cell biology has become increasingly popular. Sample processes from cell biology that are more clearly presented in animation than in static illustrations are identified. The value of animation is evaluated on whether the process being taught involves motion, cellular location, or sequential order of numerous events. Computer programs for developing animation and animations associated with cell biology textbooks are reviewed, and links to specific examples of animation are given. Finally, future teaching tools for all fields of biology will increasingly benefit from an expansion of animation to the use of simulation. One purpose of this review is to encourage the widespread use of animations in biology teaching by discussing the nature of digital animation.  相似文献   

13.
Aging can be defined as a process of progressive decline in the physiological capacity of an organism, manifested by accumulated alteration and destabilization at the whole system level. Systems biology approaches offer a promising new perspective to examine the old problem of aging. We begin this review by introducing the concepts of systems biology, and then illustrate the application of systems biology approaches to aging research, from gene expression profiling to network analysis. We then introduce the network that can be constructed using known lifespan and aging regulators, and conclude with a look forward to the future of systems biology in aging research. In summary, systems biology is not only a young field that may help us understand aging at a higher level, but also an important platform that can link different levels of knowledge on aging, moving us closer to a more comprehensive control of systematic decline during aging.  相似文献   

14.
Loewith R  Hall MN 《Genetics》2011,189(4):1177-1201
TOR (Target Of Rapamycin) is a highly conserved protein kinase that is important in both fundamental and clinical biology. In fundamental biology, TOR is a nutrient-sensitive, central controller of cell growth and aging. In clinical biology, TOR is implicated in many diseases and is the target of the drug rapamycin used in three different therapeutic areas. The yeast Saccharomyces cerevisiae has played a prominent role in both the discovery of TOR and the elucidation of its function. Here we review the TOR signaling network in S. cerevisiae.  相似文献   

15.
16.
Evolutionary cell biology can afford an interdisciplinary comparative view that gives insights into both the functioning of modern cells and the origins of cellular systems, including the endocytic organelles. Here, we explore several recent evolutionary cell biology studies, highlighting investigations into the origin and diversity of endocytic systems in eukaryotes. Beginning with a brief overview of the eukaryote tree of life, we show how understanding the endocytic machinery in a select, but diverse, array of organisms provides insights into endocytic system origins and predicts the likely configuration in the last eukaryotic common ancestor (LECA). Next, we consider three examples in which a comparative approach yielded insight into the function of modern cellular systems. First, using ESCRT-0 as an example, we show how comparative cell biology can discover both lineage-specific novelties (ESCRT-0) as well as previously ignored ancient proteins (Tom1), likely of both evolutionary and functional importance. Second, we highlight the power of comparative cell biology for discovery of previously ignored but potentially ancient complexes (AP5). Finally, using examples from ciliates and trypanosomes, we show that not all organisms possess canonical endocytic pathways, but instead likely evolved lineage-specific mechanisms. Drawing from these case studies, we conclude that a comparative approach is a powerful strategy for advancing knowledge about the general mechanisms and functions of endocytic systems.The endomembrane system mediates transport of lipids, proteins, and other molecules to the various locations in the eukaryotic cell. It also underlies the interactions with the extracellular environment, presenting material at the cell surface as well as secreting and internalizing material. In modern cells, these latter aspects are important for signal transduction, surface remodeling, and nutrient acquisition. Just as these abilities are crucial to modern cells, they were likely equally important for the very first eukaryotes as they underwent speciation from prokaryotic-like ancestors via niche competition in the ancient world (Cavalier-Smith 2002). Understanding the events and biological processes involved in the evolution of the membrane-trafficking system in general, and the endocytic system in particular, gives us insights into landmark events in our cellular past.Evolutionary insight about cellular phenomenon is derived from two basic types of comparative study: from molecular cell biological analyses of increasingly tractable model organisms across the diversity of eukaryotes, and by computational analyses of genomic information (i.e., the genes encoding the membrane-trafficking machinery). Whereas the information gathered from taking this comparative, or evolutionary cell biology, approach (Brodsky et al. 2012) is valuable for evolutionary content, these same analyses are potentially highly valuable in understanding basic cell biology, a benefit that is perhaps less obvious and hence less appreciated. In this article, we frame what has been learned about the evolution of the endocytic system, in the dual context of what it tells us about ancient cells together with what it can tell us about modern ones. We begin with a brief introduction to eukaryotic diversity and the evolution of the membrane-trafficking system. We then delve into the evolution of specific endocytic factors to illustrate the ways in which cell biologists of all stripes can benefit from the emerging field of evolutionary cell biology.  相似文献   

17.
实验教学是细胞生物学课程学习的重要组成部分,本文结合当前国内高校细胞生物学实验课的教学模式,分析了细胞生物学实验课教学过程中存在的一些主要问题,从实验内容的选择、教学方法和考核评价体系等方面提出了实验课教学改革的几点建议,为增强生物专业学生的实验课能力提供方案。  相似文献   

18.
王筱冰  张坤  王攀 《生物磁学》2011,(19):3780-3782
实验教学是细胞生物学课程学习的重要组成部分,本文结合当前国内高校细胞生物学实验课的教学模式,分析了细胞生物学实验课微学过程中存在的一些主要问题,从实验内容的选择、教学方法和考核评价体系等方面提出了实验课教学改革的几点建议,为增强生物专业学生的实验课能力提供方案。  相似文献   

19.
美国加州大学旧金山分校的伊丽莎白·布莱克本(Elizabeth H. Blackburn)、约翰·霍普金斯医学院的卡罗尔·格雷德(Carol W. Greider)和马萨诸塞州总医院的杰克·绍斯塔克(Jack W. Szostak),因为“发现端粒和端粒酶如何保护染色体”,而获得2009年度诺贝尔奖生理学或医学奖。这个结果已在很多人的意料之中。因为端粒和端粒酶的发现揭示了线性染色体末端复制的机制,以及端粒和端粒酶在保护染色体及维持遗传稳定性中的中心作用。端粒和端粒酶的发现为科学家认识并探索衰老和肿瘤的发生机制开辟了新领域,对预防和治疗衰老及与衰老相关的疾病(如肿瘤)具有重要科学和应用意义。  相似文献   

20.
Human fibroblasts, which have a finite lifespan in cultures, have been widely used as a model system for cellular aging, and frequently used as one model of human aging. But whether cellular aging contributes to organismal aging has been controversial. To reinvestigate this question, we cultured human fibroblasts from the skin of one individual volunteer collected at different ages. Over a period of 27 years (donor age 36 years to 62 years), we obtained skin cells four times at appropriate intervals, and established eight fibroblast lines. These human fibroblasts have presented evidence for a correlation between donor age and proliferative lifespan in vitro . This result parallels the fact that telomeric DNA size cultured fibroblasts decrease with the increase in donor age. These cell lines had a normal diploid human chromosome constitution and will be useful in studies of human biology including aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号