首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
This study was conducted to investigate the effects of different sources of dietary selenium (Se) supplementation on growth performance, meat quality, Se deposition, and antioxidant property in broilers. A total of 600 one-day-old Ross 308 broilers with an average body weight (BW) of 44.30 ± 0.49 g were randomly allotted to three treatments, each of which included five replicates of 40 birds. These three groups received the same basal diet containing 0.04 mg Se/kg, supplemented with 0.15 mg Se/kg from sodium selenite (SS) or from l-selenomethionine (l-Se-methionine (Met)) or from d-selenomethionine (d-Se-Met). The experiment lasted 42 days. Both Se source and time significantly influenced (p < 0.01) drip loss of breast muscle. Supplementation with l-Se-Met and d-Se-Met were more effective (p < 0.05) in decreasing drip loss than SS. Besides, the pH value of breast muscle was also significantly influenced (p < 0.05) by time. The SS-supplemented diet increased more (p < 0.05) liver, kidney, and pancreas glutathione peroxidase (GSH-Px) activities than the d-Se-Met-supplemented diet. In addition, l-Se-Met increased more (p < 0.01) liver and pancreas GSH-Px activities than d-Se-Met. The antioxidant status was greatly improved in broilers of l-Se-Met-treated group in comparison with the SS-treated group and was illuminated by the increased glutathione (GSH) concentration in serum, liver, and breast muscle (p < 0.05); superoxide dismutase (SOD) activity in liver (p < 0.01); total antioxidant capability (T-AOC) in kidney, pancreas, and breast muscle (p < 0.05) and decreased malondialdehyde (MDA) concentration in kidney and breast muscle (p < 0.05) of broilers. Besides, supplementation with d-Se-Met was more effective (p < 0.01) in increasing serum GSH concentration and decreasing breast muscle MDA concentration than SS. l-Selenomethionine supplementation significantly increased GSH concentration in liver and breast muscle (p < 0.05); SOD activity in liver (p < 0.01); and T-AOC in liver, pancreas, and breast muscle (p < 0.05) of broilers, compared with broilers fed d-Se-Met diet. The addition of l-Se-Met and d-Se-Met increased (p < 0.01) Se concentration in serum and different organs studied of broilers in comparision with broilers fed SS diet. Therefore, dietary l-Se-Met and d-Se-Met supplementation could improve antioxidant capability and Se deposition in serum and tissues and reduce drip loss of breast muscle in broilers compared with SS. Besides, l-Se-Met is more effective than d-Se-Met in improving antioxidant status in broilers.  相似文献   

2.
This experiment was carried out to investigate the effects of different levels of organic and inorganic chromium on the performance, immune function and some serum mineral concentrations of broilers under heat stress condition (23.9–37°C cycling). A total of 150 one-day-old broiler chicks according to a completely randomized design were assigned into five treatment groups. Each treatment consisted of three replicates and each replicate contained ten chicks. Chicks were fed on corn–soybean meal basal diets with added different concentrations of chromium (0, 600 and 1,200 μg kg−1 chromium chloride or 600 and 1,200 μg/kg chromium l-methionine) from 1 to 49 days of age. Humoral immunity was assessed by intravenous injection of 7% sheep red blood cell (SRBC) followed by evaluation of serum for antibody titers in primary and secondary responses. Cell-mediated immunity was assessed by the cutaneous basophil hypersensitivity (CBH) test to phytohemagglutinin (PHA)-P at day 32 and PHA-M at day 48. Heterophil/lymphocyte (H/L) ratio was also measured as a reliable indicator of stress. The body mass, feed intake and conversion ratio were not influenced by dietary chromium (P > 0.05). Dietary supplementation of both organic and inorganic chromium significantly increased primary and secondary antibody responses (P < 0.01), and also improved H/L ratio (P < 0.05), CBH response (P < 0.01) as well as relative weights of thymus (P < 0.05) and spleen (P < 0.01). Both dietary organic and inorganic chromium caused an increase in serum concentrations of Cr and Zn (P < 0.01), but decreased the serum concentration of Cu (P < 0.01). These results suggest that supplemental chromium especially in organic form offers a good management practice to reduce heat stress-related depression in immunocompetence of broiler chicks.  相似文献   

3.
Wu  Xuezhuang  Dai  Sifa  Hua  Jinling  Hu  Hong  Wang  Shujuan  Wen  Aiyou 《Biological trace element research》2019,191(1):199-206

A 42-day experiment was conducted to evaluate the influence of dietary copper (Cu) concentrations on growth performance, nutrient digestibility, and serum parameters in broilers aged from 1 to 42 days. Five hundred forty 1-day-old broilers were randomly assigned into 1 of the following 6 dietary treatments: (1) control (basal diet without supplemental Cu), (2) 15 mg/kg supplemental Cu (Cu15), (3) 30 mg/kg supplemental Cu (Cu30), (4) 60 mg/kg supplemental Cu (Cu60), (5) 120 mg/kg supplemental Cu (Cu120), and (6) 240 mg/kg supplemental Cu (Cu240), Cu as copper methionine. A 4-day metabolism trial was conducted during the last week of the experiment feeding. The results showed that dietary Cu supplementation increased the average daily gain and the average daily feed intake (P < 0.01). The feed gain ratio, however, was not affected by dietary Cu (P > 0.10). Additionally, dietary Cu supplementation increased the digestibility of fat and energy (P < 0.05). The concentration of serum cholesterol, triglycerides, and high-density lipoprotein cholesterol decreased with dietary Cu supplementation (P < 0.05). The activities of serum Cu-Zn superoxide dismutase (P < 0.05), glutathione peroxidase (P < 0.05), and ceruloplasmin (P = 0.09), on the contrary, were increased by Cu addition. For immune indexes, dietary Cu supplementation increased serum IgA and IgM (P < 0.05). In addition, the activities of serum ALT increased with increasing dietary Cu supplementation (P < 0.05). In conclusion, our data suggest that Cu supplementation can increase fat digestibility and promote growth. Additionally, dietary Cu supplementation can reduce serum cholesterol and enhance antioxidant capacity in broilers.

  相似文献   

4.
Three hundred and sixty healthy Ross × Ross 1-day-old broilers were used to study the effects of zinc glycine chelate (Zn-Gly) on oxidative stress, contents of trace elements, and intestinal morphology. All broilers were randomly assigned to six treatment groups, which replicates three times. Diets were as follows: (1) control (containing 29.3 mg zinc (Zn)/kg basic diet (0–21 days) and 27.8 mg Zn/kg (22–42 days)); (2) basic diet plus 30 mg Zn/kg from Zn-Gly; (3) basic diet plus 60 mg Zn/kg from Zn-Gly; (4) basic diet plus 90 mg Zn/kg from Zn-Gly; (5) basic diet plus 120 mg Zn/kg from Zn-Gly; and (6) positive control, basic diet plus 120 mg Zn/kg from zinc sulfate (ZnSO4). The results showed that the addition of 90 or 120 mg/kg Zn-Gly led to an improvement of activity of Cu/Zn superoxide dismutase and glutathione peroxidase and a reduction of malondialdehyde content in livers at 21 and 42 days. With 90 mg/kg Zn-Gly, the content of sera zinc increased by 17.55% (P < 0.05) in 21-day broilers and 10.77% (P > 0.05) in 42-day broilers compared with that of the control. Adding 120 mg/kg Zn-Gly or ZnSO4 to broilers' diets greatly enhanced the content of zinc in feces at 21 days (P < 0.05) and at 42 days (P < 0.05). For 42-day chickens, increased villus height and decreased crypt depth of the jejunum could be observed in the second growth stage of broilers fed with 90 mg/kg Zn-Gly. Also, intestinal wall thickness decreased (P < 0.05). In addition, adding 90 mg/kg Zn-Gly to the diet markedly elevated villus length of duodenum and decreased crypt depth of ileum (P < 0.05) in 42-day broilers.  相似文献   

5.
We investigated the effects of supplemental chromium (Cr) as Cr (III) picolinate on pigs fed high-fat diets (HFD) in a 56-day experiment. Thirty-two crossbred pigs (9.6 kg) were allotted to four treatments with four blocks and two pigs/pen. Treatments included: (1) low-fat diet (fat < 3.5%; LFD) with no Cr, (2) HFD (fat > 30%) with no Cr, (3) HFD with 1,000 ppb Cr, and (4) HFD with 2,000 ppb Cr. Pigs fed HFD gained weight faster, consumed less, and had lower feed:gain (p < 0.05). Pigs fed HFD had higher respiration rates than pigs fed LFD on d 41 (p < 0.05). Plasma insulin on d 14 linearly decreased with Cr (p = 0.05). Plasma cholesterol concentrations were higher in the pigs fed HFD than those fed LFD, but were largely unaffected by supplemental Cr. Consumption of HFD resulted in greater carcass weight, perirenal fat, and backfat measures (p < 0.01) compared with the LFD group. Cr resulted in linear reductions of hot carcass weight (p = 0.08) and average backfat (p < 0.05). The effects of Cr on carcass fat measures were more pronounced in castrated males than in females. These results indicate that Cr attenuates some effects of a HFD, mainly body fat accretion of pigs, and especially in castrated pigs.  相似文献   

6.
One hundred twenty crossbred piglets (Duroc × Landrace × Yorkshire) were used to determine the effects of dietary zinc glycine chelate on growth performance, tissue mineral concentrations, and serum enzyme activity. All pigs were allotted to four treatments and fed with basal diets supplemented with 0, 50, and 100 mg/kg Zn as zinc glycine chelate or 3,000 mg/kg Zn as zinc oxide (ZnO). After the 35-day feeding trial, results of the study showed that, compared to the control, average daily gain was improved (P < 0.05) for pigs fed 100 mg/kg Zn from zinc glycine chelate or 3,000 mg/kg Zn from ZnO and Zn concentrations in serum and M. longissimus dorsi were significantly enhanced by 100 mg/kg dietary zinc glycine chelate and 3,000 mg/kg ZnO. In addition, supplementation of 100 mg/kg zinc glycine chelate decreased (P < 0.05) the liver Fe level, liver Zn level, spleen Cu level, and kidney Cu level compared to that of the 3,000-mg/kg ZnO group. For feces mineral excretion, 3,000 mg/kg Zn from ZnO greatly increased the concentration of fecal Zn (P < 0.01) and Mn (P < 0.05) compared to that of the control or the 100-mg/kg zinc glycine chelate group. Moreover, alkaline phosphatase and Cu/Zn superoxide dismutase activities of pigs in 100 mg/kg zinc glycine chelate and ZnO treatments were greatly higher than that of the control. The results of present study showed that supplementation with zinc glycine chelate could improve growth and serum enzyme activities and could also decrease zinc excretion in feces in weanling pig compared to high dietary ZnO.  相似文献   

7.
A 2 × 3 factorial arrangement of treatments was used to investigate the effects of different levels of copper (Cu, 0, 19, and 38 mg/kg, dry matter (DM)) and molybdenum (Mo, 0 and 5 mg/kg, DM) supplements and an interaction of these two factors on growth performance, nutrient digestibility, and cashmere and follicle characteristics in cashmere goats. Thirty-six Liaoning cashmere goats (approximately 1.5 years of age; 27.53 ± 1.38 kg of body weight) were assigned randomly to one of six treatments and fed with Chinese wildrye- and alfalfa hay-based treatment diets (the basal diet contained 4.72 mg Cu/kg, 1.65 mg Mo/kg, and 0.21% S.). Body weight was measured on two consecutive days at the start and the end of the 70-day experimental period. On day 30, the metabolism trial was conducted to study the effects of dietary Cu and Mo on nutrient digestibility. The cashmere and skin samples were collected on day 70. Copper supplementation increased (P < 0.05) growth performance and fiber digestion, but there were no differences (P > 0.05) between Cu-supplemented groups. Addition of 19 mg Cu/kg DM increased (P < 0.05) cashmere growth length or growth rate by increasing the number of active secondary follicles. Molybdenum supplementation decreased (P < 0.05) growth, but did not affect (P > 0.05) nutrient digestion, cashmere, and follicle characteristics. There is a tendency or significant interaction effect of Cu and Mo on growth performance (P = 0.057), cashmere growth (P = 0.076), or diameter (P < 0.05) which might be accomplished by changing the number of secondary follicle and active secondary follicle, and secondary to primary follicle ratio. In conclusion, the optimal supplemental Cu level for Liaoning cashmere goats fed with the basal diet was 19 mg/kg DM (the total dietary Cu level of 23.72 mg/kg DM), while 38 mg Cu/kg DM supplementation was found to be needed when 5 mg Mo/kg was added in the basal diet during the cashmere growing period.  相似文献   

8.
A 42-day experiment was conducted to compare the effects of various levels of sodium selenite (SS) and Se-enriched yeast (SY) on chicken productivity, carcass traits, and breast Se concentration. Six hundred 1-day-old Cobb 500 broiler chicks were placed on 1 of 6 experimental treatments. The treatments consisted of feeding a diet without Se supplementation (basal diet) or basal diet with 0.6 mg/kg supplemented Se supplied by SS, SY, or a mix of the two (0.45 SS + 0.15 SY; 0.3 SS + 0.3 SY; 0.15 SS + 0.45 SY). Chicks in all Se-supplemented treatments had significantly higher final body weight and eviscerated weight than those on the basal diet (P < 0,05) and no significant differences were observed among selenium source (P < 0.05). Also, chicks in all Se-supplemented treatments had significantly higher Se contents in breast tissue than the control group (P < 0.05). Replacing SS by SY in the broiler diets resulted in increased concentrations of Se in the breast (P < 0.01). Strong correlations were found between breast Se concentrations and the level of SY supplementation of the broiler diet (r = 0.992). The results from this experiment indicate that SY is a superior source of selenium for the production of selenized meat, and can be used, without any detrimental effect on chicken performance, for adding nutritional value to broiler meat and thus safely improving human selenium intake.  相似文献   

9.

The present study was conducted to evaluate the effects of dietary supplementation of recombinant plectasin (Ple) on the growth performance, intestinal health, and serum immune parameters in broilers. A total of 288 1-day-old male broilers (Arbor Acres) were randomly allotted to four dietary treatments including the basal diet (NC) and basal diet supplemented with 10 mg enramycin/kg (PC), 100 mg Ple/kg (LPle), and 200 mg Ple/kg (HPle) diets. The results indicated Ple increased (P < 0.01) average daily gain and decreased (P ≤ 0.02) feed to gain ratio of broilers. In addition, the supplementation of Ple in the diets increased (P ≤ 0.01) duodenal lipase (day 21) and trypsin (day 42) activities compared with the NC group. Similar as the supplementation of enramycin, Ple also increased villus height and decreased crypt depth in jejunum (day 21), and thus the villus height to crypt depth ratio (P < 0.01) was increased compared to the NC group on day 42. The serum immunoglobulin M (days 21 and 42), immunoglobulin G (day 42), complement 3 (day 21), and complement 4 (days 21 and 42) were significantly increased (P ≤ 0.02) due to the supplementation of Ple and enramycin, while the concentration of malondialdehyde in jejunum was decreased (P < 0.01) in PC, LPle, and HPle groups on day 21 compared with those in the NC group. Furthermore, Ple reduced (P < 0.01) Escherichia coli and total aerobic bacteria population in ileum and cecum of birds on days 21 and 42. These results indicate that the recombinant plectasin has beneficial effects on growth performance, intestinal health, and innate immunity in broilers.

  相似文献   

10.
Forty-eight 2-year-old Liaoning Cashmere goats (body weight = 38.0 ± 2.94 kg) were used to investigate the effects of dietary iodine (I) and selenium (Se) supplementation on nutrient digestibility, serum thyroid hormones, and antioxidant status during the cashmere telogen period to learn more about the effects of dietary I and Se on nutrition or health status of Cashmere goats. The goats were equally divided into six groups of eight animals each that were treated with 0, 2, or 4 mg of supplemental I/kg dry matter (DM) and 0 or 1 mg of supplemental Se/kg DM in a 2 × 3 factorial arrangement of treatments. The six treatments were I0Se0, I2Se0, I4Se0, I0Se1, I2Se1, and I4Se1. The concentrations of I and Se in the basal diet were 0.67 and 0.09 mg/kg DM, respectively. The study started in March and proceeded for 45 days. Supplemental I or Se alone had no effect on nutrient digestibility and nitrogen metabolism. However, the interaction between I and Se was significant regarding the digestibility of acid detergent fiber (ADF; P < 0.05), and compared with group I4Se1, the digestibility of ADF was significantly increased in group I4Se0 (P < 0.05). Selenium supplementation did not affect serum triiodothyronine (T3) or thyroxine (T4) concentrations. However, the concentration of serum T4 but not that of T3 was significantly increased with I supplementation (P < 0.05). In addition, serum superoxide dismutase (SOD) activity was not affected (P > 0.05), but serum glutathione peroxidase (GSH-Px) activity was significantly decreased by I supplementation (P < 0.05). The antioxidant status was improved by Se supplementation, and the activities of SOD and GSH-Px were significantly increased (P < 0.05).  相似文献   

11.
The purpose of this study was to examine oxidative stress induced by dietary vanadium in the mucosa of different parts of intestine including duodenum, jejunum, ileum, and cecal tonsil. A total of 420 1-day-old avian broilers were divided into six groups and fed on a corn–soybean basal diet as control diet or the same basal diet supplemented with 5, 15, 30, 45, and 60 mg/kg vanadium as ammonium metavanadate. During the experimental period of 42 days, oxidative stress parameters were determined for both control and experimental groups. The results showed that malondialdehyde content was significantly higher (p < 0.05 or p < 0.01) in 30, 45, and 60 mg/kg groups than in control group. In contrast, the activities of superoxide dismutase, catalase, and glutathione peroxidase, and ability to inhibit hydroxyl radical, and glutathione hormone content were significantly decreased (p < 0.05 or p < 0.01) mainly in 45 and 60 mg/kg groups in comparison with those of control group. However, the abovementioned oxidative stress parameters were not significantly changed (p > 0.05) in 5 and 15 mg/kg groups. It was concluded that dietary vanadium in excess of 30 mg/kg could cause obvious oxidative stress in the intestinal mucosa, which could impact the antioxidant function of intestinal tract in broilers.  相似文献   

12.
A 16-week experiment was conducted to compare effects of various levels of sodium selenite (SS) and Se-enriched yeast (SY), on the whole-egg Se content and hen’s productivity. One hundred Shaver 579 hens, 27 weeks old, were placed on one of five experimental treatments. Each treatment was replicated four times with five hens per cage. Treatments consisted of feeding a low Se diet without supplementation (basal diet) or basal diet with one of two levels of supplemented Se (0.4 or 0.8 mg/kg) supplied by SS or SY. All supplemented treatments had significantly higher whole-egg Se concentration from basal diet (P < 0.05). On the same supplemented level, hens fed on SY had higher egg Se content from hens feed on SS (P < 0.001). No effects of dietary treatments on egg weight, percentages of dirty and cracked egg, and feed intake and conversion of feed were observed throughout the trial (P < 0.05). In the first 8 weeks, there was no significant difference (P < 0.05) in hen-day egg production among treatments. From the ninth week on to the end of the trial, supplementation of SY to hen’s diet resulted in a higher egg production than SS (P < 0.01).  相似文献   

13.
The purpose of this study was to assess the effects of oral iron supplementation on hematological and iron metabolism in elite soccer players. Thirty-five members of the Real Zaragoza SAD soccer team took part in this study: group A (GA, n = 24; Spanish Premier League) took an oral iron supplement of 80 mg day−1 for 3 weeks, and group B (GB, n = 11; Spanish Third Division League) did not receive any supplementation. In GA, the parameters were measured before and after giving the iron supplements, while in GB, measurements were only made at the time of collecting the second set of data from GA. After supplementation, GA showed an increase in serum iron (SI) (P < 0.05), serum ferritin (Ftn) (P < 0.01), and transferrin saturation (Sat) (P < 0.01) with respect to the basal values. In addition, GA showed higher values of hematocrit (P < 0.01), mean corpuscular volume (P < 0.01), Ftn (P < 0.01), and Sat (P < 0.01) than GB. No significant differences were found in any other parameters. More specifically, a higher percentage of players had Ftn levels above upper limits in GA vs. GB (P < 0.05), and GB had a higher incidence of Ftn below lower limits with respect to subjects in GA (P < 0.01). Further, after treatment, 58.3% of GA had >800 mg of SI, while all players in GB presented levels below the lower limits. In conclusion, iron supplementation with 80 mg·day−1 for 3 weeks, before the start of the soccer season, can be recommended for elite soccer players.  相似文献   

14.
Patients with chronic kidney disease (CKD) have an increased incidence of cancer. It is well known that long periods of hemodialysis (HD) treatment are linked to DNA damage due to oxidative stress. In this study, we examined the effect of selenium (Se) supplementation to CKD patients on HD on the prevention of oxidative DNA damage in white blood cells. Blood samples were drawn from 42 CKD patients on HD (at the beginning of the study and after 1 and 3 months) and from 30 healthy controls. Twenty-two patients were supplemented with 200 μg Se (as Se-rich yeast) per day and 20 with placebo (baker's yeast) for 3 months. Se concentration in plasma and DNA damage in white blood cells expressed as the tail moment, including single-strand breaks (SSB) and oxidative bases lesion in DNA, using formamidopyrimidine glycosylase (FPG), were measured. Se concentration in patients was significantly lower than in healthy subjects (P < 0.0001) and increased significantly after 3 months of Se supplementation (P < 0.0001). Tail moment (SSB) in patients before the study was three times higher than in healthy subjects (P < 0.01). After 3 months of Se supplementation, it decreased significantly (P < 0.01) and was about 16% lower than in healthy subjects. The oxidative bases lesion in DNA (tail moment, FPG) of HD patients at the beginning of the study was significantly higher (P < 0.01) compared with controls, and 3 months after Se supplementation it was 2.6 times lower than in controls (P < 0.01). No changes in tail moment was observed in the placebo group. In conclusion, our study shows that in CKD patients on HD, DNA damage in white blood cells is higher than in healthy controls, and Se supplementation prevents the damage of DNA.  相似文献   

15.
The effects of supplemental chromium (Cr) as chromic chloride hexahydrate in incremental dose levels (0, 0.5, 1.0, and 1.5 mg/day for 240 days) on metabolism of nutrients and trace elements were determined in dwarf Bengal goats (Capra hircus, castrated males, average age 3 months, n = 24, initial mean body weight 6.4 ± 0.22 kg). Live weight increased linearly (p < 0.05) with the level of supplemental Cr. Organic matter and crude protein digestibility, intake of total digestible nutrients, and retention of N (g/g N intake) increased (p < 0.05) in a dose-dependent linear manner. Serum cholesterol and tryacylglycerol concentrations changed inversely with the dose of supplemental Cr (p < 0.01). Supplemental Cr positively influenced retention of copper and iron (p < 0.05) causing linear increase (p < 0.01) in their serum concentrations. It was concluded that Cr supplementation may improve utilization of nutrients including the trace elements and may also elicit a hypolidemic effect in goats. However, further study with regards to optimization of dose is warranted.  相似文献   

16.
A 16-week-long experiment was performed to compare the effect of sodium selenite (SS) and selenium-enriched yeast (SY) supplementation on eggshell quality and also to evaluate breaking force correlation with other parameters of shell quality originating from hens fed with selenium supplementation. One hundred Shaver 579 hens (27 weeks old) with similar body size were randomly divided for five dietary treatments: basal diet without selenium supplementation and basal diets with two levels of selenium supplementation (0.4 or 0.8 mg/kg) via SS or SY. No adverse effect of Se inclusion in hen's feed, regardless of its source, on shell breaking force, shell deformation, shape index, shell thickness and shell percentage, were observed throughout the current study (P > 0.05). Moderate correlations were found between breaking force and nondestructive shell deformation for all diets (P < 0.05). There was no significant overall correlation between egg breaking force and shell thickness or/and percentage shell in the presence of selenium supplemention (P > 0.05). Shape index in all four selenium-supplemented groups was not related to the breaking force (P > 0.05). Selenium supplementation of up to 0.8 mg/kg, regardless of its source, in the diet of laying hens in their first phase of laying does not adversely affect eggshell quality.  相似文献   

17.
An experiment was conducted to investigate the bioavailability of organic manganese proteinate (Mn) relative to inorganic Mn sulfate for broilers fed a conventional corn–soybean meal basal diet. A total of 448-day-old Arbor Acres commercial male chicks were fed the Mn-unsupplemented basal diet (control) or basal diet supplemented with 60, 120, or 180 mg Mn/kg from each Mn source. At 21 days of age, heart tissue was excised for testing DM, Mn concentration, manganese superoxide dismutase (MnSOD) activity, and MnSOD mRNA level. The Mn concentration, MnSOD activity, and MnSOD mRNA level in heart tissue increased (P < 0.01) linearly as dietary manganese concentration increased. Based on slope ratios from multiple linear regressions of the above three indices on added Mn level, there was no significant difference (P > 0.21) in bioavailability between Mn proteinate and Mn sulfate for broilers in this experiment.  相似文献   

18.
This experiment was conducted to examine the effect of dietary copper supplementation on somatostatin (SS) and growth hormone-releasing hormone (GHRH) mRNA expression levels in the hypothalami of growing pigs. A total of 45 crossbred pigs were randomly assigned to three groups of 15 pigs each; five replicates of three animals comprised each group. Pigs were allocated to diets that contained 5 mg/kg copper (control), 125 mg/kg copper sulfate, or 125 mg/kg copper methionine. At the end of the experiment, five pigs were selected at random from each group and slaughtered, and hypothalami were collected for determination of SS and GHRH mRNA expression levels. The results showed that the SS expression levels were lower and the GHRH levels were higher in pigs fed the diets with 125 mg/kg copper methionine (P < 0.05) and 125 mg/kg copper sulfate (P < 0.05), respectively, than in pigs fed the diet with 5 mg/kg copper. Furthermore, the relationship between SS mRNA and GHRH mRNA abundance had a significantly negative correlation (P < 0.05). The data indicated that high dietary copper could enhance GHRH mRNA expression levels and suppress SS mRNA expression levels in the hypothalami of pigs. High lever dietary copper (125 mg/kg copper sulfate or 125 mg/kg copper methionine) increased pigs’ growth performance and feed efficiency but had no significant effect on daily feed intake; 125 mg/kg copper sulfate or 125 mg/kg copper methionine at the same lever had no difference on growth promoting in pigs.  相似文献   

19.
In order to investigate the effects of dietary ginger extract (GE) enriched in gingerols on broilers under heat stress (HS) from 21 to 42 days of age, a total of 144 Ross 308 male broilers were randomly allocated to three groups with six replicates of eight broilers per replicate. Broilers in the control group were raised at 22 °C and fed a basal diet, and broilers in the other two groups were raised under cyclic HS (34 °C from 9:00 to 17:00 and at 22 °C for the rest of the time) and fed the basal diet with or without 1000 mg/kg GE. Supplementation of GE improved (P < 0.05) final body weight, average daily gain and feed conversion ratio of broilers under HS, and tended (P < 0.1) to increase breast muscle yield. The alterations of serum total protein, albumin, total cholesterol levels and aspartate aminotransferase activity under HS were reversed (P < 0.05) by GE, which also decreased (P < 0.05) serum triglyceride level and alanine aminotransferase activity. The decreased redness (a* value) and increased drip loss of breast muscle induced by HS were restored (P < 0.05) by GE. Moreover, GE supplementation increased (P < 0.05) total antioxidant capacity and decreased (P < 0.05) malondialdehyde content in liver and breast muscle, and increased (P < 0.05) glutathione peroxidase activity in serum and breast muscle. In conclusion, dietary GE supplementation restored growth performance, serum metabolites and meat quality of broilers under HS possibly by improving antioxidant activity.  相似文献   

20.
The present study was conducted to investigate the effects of chromium histidinate (CrHis) against experimentally induced type II diabetes and on chromium (Cr), zinc (Zn), selenium (Se), manganese (Mn), iron (Fe), and copper (Cu) in serum, liver, and kidney of diabetic rats. The male Wistar rats (n = 60, 8 weeks old) were divided into four groups. Group I received a standard diet (12% of calories as fat); group II were fed standard diet and received CrHis (110 mcg CrHis/kg body weight per day); group III received a high-fat diet (HFD; 40% of calories as fat) for 2 weeks and then were injected with streptozotocin (STZ) on day 14 (STZ, 40 mg/kg i.p.; HFD/STZ); group IV were treated as group III (HFD/STZ) but supplemented with 110 mcg CrHis/kg body weight per day. The mineral concentrations in the serum and tissue were determined by atomic absorption spectrometry. Compared to the HFD/STZ group, CrHis significantly increased body weight and reduced blood glucose in diabetic rats (p < 0.001). Concentrations of Cr, Zn, Se, and Mn in serum, liver, and kidney of the diabetic rats were significantly lower than in the control rats (p < 0.0001). In contrast, higher Fe and Cu levels were found in serum and tissues from diabetic versus the non-diabetic rats (p < 0.001). Chromium histidinate supplementation increased serum, liver, and kidney concentrations of Cr and Zn both in diabetic and non-diabetic rats (p < 0.001). Chromium supplementation increased Mn and Se levels in diabetic rats (p < 0.001); however, it decreased Cu levels in STZ-treated group (p < 0.001). Chromium histidinate supplementation did not affect Fe levels in both groups (p > 0.05). The results of the present study conclude that supplementing Cr to the diet of diabetic rats influences serum and tissue Cr, Zn, Se, Mn, and Cu concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号