首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Petunia × hybrida Vilm. is a fast-growing ornamental plant that was cultured under varying storage conditions to address seasonal fluctuations in microcutting demand. The effects of storage period (16 to 32 wk), temperature (15 to 23°C), low and high light intensity, sucrose (1 to 5% w/v), and mannitol (0 to 4% w/v) in factorial arrangements were analyzed. Stored and non-stored shoots were compared for microcutting production, harvested twice at 3-wk intervals, and were subsequently transferred to the greenhouse for 17 d. Nearly all plants from 16-wk storage survived well at all treatment conditions and the quality and quantity of microcuttings were enhanced from shoots stored at 15°C and 3% (w/v) sucrose, without mannitol for all storage periods. Another experiment tested 11- to 25-wk storage period with Petunia hybrida ‘Ragtime’ and ‘Suncatcher’ at 12°C and low light intensity. Repeated cycles of microcutting at 2-wk intervals were extended with ex vitro rooting in the greenhouse for 15 d. More and better quality microcuttings were obtained from the second and third cutting cycles than from the first or fourth cycles. By reducing temperature and light intensity, Petunia hybrida was successfully stored for 32 wk (without mannitol). A seasonal schedule with a short production window, followed by cutting large numbers of high-quality shoot-tips, could be affected and efficiently managed through storage. The value of stored shoots was enhanced by extending the number of times a shoot could be cut over repeated cutting cycles with a gain in microcutting quality.

  相似文献   

2.
Xanthomonas campestris MB245, a specific pathogen of the weedy grass Poa annua (annual bluegrass), is being developed as a bioherbicide to control this pest in turf. Nutritional and environmental factors were evaluated based on their ability to support rapid submerged culture growth and high cell yield. Temperature optima for the growth of X. campestris cells in submerged culture were between 27 and 30°C. At 30°C, optimal nutritional conditions for X. campestris growth supported generation times of 150–175 min and cell yields after 24 h growth of 1–2 × 1010 cells ml−1. Media containing sucrose or glucose as the carbon source and various organic nitrogen sources supported optimal X. campestris growth and cell yield. The addition of vitamin mixtures to complex and defined media had no significant effect on growth or cell yield. The age of X. campestris cultures had a significant impact on cell survival after freeze drying. Following freeze drying, log phase cell survival (44%) was significantly lower than early and late stationary phase cell survival, 62% and 68%, respectively. Cells harvested in stationary phase, freeze dried and stored under vacuum at 4°C, showed no significant loss in viability after 6 months. Thus, high cell concentrations of the bioherbicide X. campestris can be rapidly produced in submerged culture and stabilized as freeze-dried preparations. Received 14 August 1998/ Accepted in revised form 8 October 1998  相似文献   

3.
The encapsulated shoot tips and nodal segments of Eclipta alba were stored at 4, 12 and 20 °C under irradiance of 1.5 gmmol m−2 s−1 and high conversion was observed in synseeds stored at 4 °C for 8 weeks. Duration of storage was extended up to 12 weeks by decreasing sucrose concentration in the alginate matrix from 3 to 1 or 2 % and conversion frequency was 71.2–76.1 %. Synseed-derived plantlets survived by 100 % in ex vitro conditions. RAPD analysis revealed uniform amplification profile in donor and synseed derived plantlets.  相似文献   

4.
The main objective of this study was to evaluate the stability of astaxanthin after drying and storage at different conditions during a 9-week period. Recovery of astaxanthin was evaluated by extracting pigments from the dried powders and analysing extracts by HPLC. The powders obtained were stored under different conditions of temperature and oxygen level and the effects on the degradation of astaxanthin were examined. Under the experimental conditions conducted in this study, the drying temperature that yielded the highest content of astaxanthin was 220°C, as the inlet, and 120°C, as the outlet temperature of the drying chamber. The best results were obtained for biomass dried at 180/110°C and stored at −21°C under nitrogen, with astaxanthin degradation lower than 10% after 9 weeks of storage. A reasonable preservation of astaxanthin can be achieved by conditions 180/80°C, −21°C nitrogen, 180/110°C, 21°C nitrogen, and 220/80°C, 21°C vacuum: the ratio of astaxanthin degradation is equal or inferior to 40%. In order to prevent astaxanthin degradation of Haematococcus pluvialis biomass, it is recommended the storage of the spray dried carotenized cells (180/110oC) under nitrogen and −21°C.  相似文献   

5.
Methods for long-term preservation of lily germplasm were examined. t In vitro regenerated bulblets of 10 lily (t Lilium L.) genotypes (Asiatic hybrids, Oriental hybrids, t L. longiflorum and t L. henryi) were stored for 28 months at -2 °C and 25 °C on four different media: 1/4 or full strength Murashige and Skoog nutrients with 9% (w/v) or 6% sucrose. Sprout growth, bulb growth, and viability were determined. The combination of 1/4 strength MS nutrients and 9% sucrose gave the highest reduction in sprout and bulb growth, the highest viability and the highest percentage of regrowth after 28 months of storage. At 25 °C, all lily genotypes survived 28 months of storage under these conditions. At -2 °C, Asiatic and Oriental hybrids survived 28 months of storage, whereas genotypes of t L. longiflorum and t L. henryi survived 6 months of storage, but died during prolonged storage. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Storage of Porcine Articular Cartilage at High Subzero Temperatures   总被引:3,自引:0,他引:3  
Objective: Transplantation of osteochondral allograft tissue can treat large joint defects but is limited by tissue availability, surgical timing, and infectious disease transmission. Fresh allografts perform the best but requirements for infectious disease testing delay the procedure with subsequent decrease in cell viability and function. Hypothermic storage at lower temperatures can extend tissue banking time without loss of cell viability and, therefore, increase the supply of allograft tissue. This study investigated the effects of different cryoprotectant solutions on intact AC at various subzero temperatures. Design: 10 mm porcine osteochondral dowels were immersed for 30 minutes in various combinations of solutions [(XVIVO, propylene glycol (51% w/w), sucrose (46% w/w)] cooled to various subzero temperatures (−10, −15, and −20 °C), and held for 30 min. After warming, 70 μm slices were stained with membrane integrity dyes, viewed under fluorescence microscopy and cell recovery calculated relative to fresh controls. Results: Results demonstrated excellent cell recovery (>75%) at −10°C provided ice did not form. Excellent cell recovery (>70%) occurred at −15°C in solutions containing 51% propylene glycol but formation of extra-matrix ice in other solutions resulted in significant cell loss. All groups had <6% cell recovery at −20°C and propylene glycol did not provide a protective effect even though extra-matrix ice did not form Conclusions: These results suggest that extra-matrix ice plays an important role in cell damage during cryopreservation. Excellent cell recovery can be obtained after storage at subzero temperatures if ice does not form. Hypothermic preservation at high subzero temperatures may extend AC storage time in tissue banks compared to current techniques.  相似文献   

7.
This work investigated the effects of increasing temperature from 30°C to 47°C on the physiological and genetic characteristics of Saccharomyces cerevisiae strain 63M after continuous fermentation with cell recycling in a system of five reactors in series. Steady state was attained at 30°C, and then the temperature of the system was raised so it ranged from 35°C in the last reactor to 43°C in the first reactor or feeding reactor with a 2°C difference between reactors. After 15 days at steady state, the temperature was raised from 37°C to 45°C for 25 days at steady state, then from 39°C to 47°C for 20 days at steady state. Starter strain 63M was a hybrid strain constructed to have a MAT a/α, LYS/lys, URA/ura genotype. This hybrid yeast showed vigorous growth on plates at 40°C, weak growth at 41°C, positive assimilation of melibiose, positive fermentation of galactose, raffinose and sucrose. Of 156 isolates obtained from this system at the end of the fermentation process, only 17.3% showed the same characteristics as starter strain 63M. Alterations in mating type reaction and in utilization of raffinose, melibiose, and sucrose were identified. Only 1.9% of the isolates lost the ability to grow at 40°C. Isolates showing requirements for lysine and uracil were also obtained. In addition, cell survival was observed at 39–47°C, but no isolates showing growth above 41°C were obtained.  相似文献   

8.
Infection of field-maintained parthenocarpic Solanum lycopersicum L. (tomato) plants with Tomato yellow leaf curl virus provided the motivation to preserve the germplasm by in vitro methods. In this study, a method for medium-term in vitro conservation of parthenocarpic tomato plants was established. As a preliminary study, the non-parthenocarpic tomato ‘Momotaro’ was used to obtain a number of uniform explants for vegetative propagation under aseptic conditions at 23°C. The modification of sucrose or mannitol concentrations in the medium alone was insufficient for the slow-growth storage of shoot cultures. In contrast, temperature had a considerable effect on the time of conservation. ‘Momotaro’ shoot cultures were pre-cultured with Murashige and Skoog (MS) medium supplemented with 2% (w/v) sucrose at 23°C for 6 d for rooting and were then stored at 10°C for further conservation. When maintained at 10°C, only 27% of the shoot cultures needed subculture even after 3 mo, whereas 100% of plants needed subculturing after approximately 2 wk., when conserved at 23°C. When the same method was used with parthenocarpic tomatoes, plants were successfully conserved at 10°C without subculture for approximately 9 mo. Moreover, field performance and genetic stability of the stored tomato plants were assessed. This newly developed method allows for easy and efficient medium-term in vitro conservation to maintain virus-free parthenocarpic tomato plants.  相似文献   

9.
Cultures of potato (Solanum tuberosum) cv. Atlantic, chokecherry (Prunus virginiana L.) cv. Garrington and saskatoon berry (Amelancher alnifolia Nutt.) cv. Northline grown in vitro for 3 weeks at 24/22 °C, 16-h photoperiod, 150 μmol m−2 s−1 photosynthetic photon flux density (PPFD) mixed fluorescent/incandescent light were stored for 6, 9 and 12 weeks at 4 °C under 0 (darkness) and 3 μmol m−2 s−1 PPFD (690 nm red light continuous illumination). Growth regulators free MSMO medium either with or without 30 g l−1 sucrose was used to store the cultures. All cultures retained capacity to re-grow after storage. Tested factors, sucrose, light and the length of the storage period had an impact on shoot quality and re-growth capacity of the cultures. For either light treatment sucrose was essential for the low temperature maintenance of vigorous stock plants of potato, if stored for over 6 weeks. Chokecherry and saskatoon cultures stored well without sucrose; although chokecherry benefited from sucrose in the storage medium when the stock cultures were kept at the low temperature for 12 weeks. Low light significantly improved quality of the stored potato cultures, but had very little effect on both chokecherry and saskatoon berry cultures. The woody plant cultures grew during storage, and the longer the stock plants were stored, the more vigorous cultures they generated. The results indicate that growers can successfully use their existing facilities, small refrigerators and coolers with low light intensity, set at 4 °C, for short term storage of potato, chokecherry and saskatoon berry cultures. The potato cultures, which are known to be sensitive to prolonged low temperature storage, should be frequently monitored and subcultured as required. On the other hand, the woody plant stock cultures do not require any special attention when kept at 4 °C and re-grow the most vigorous shoots if stored for at least 12 weeks. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Summary The photosynthetic cell suspension culture of soybean [Glycine max (L.) Merr. cv. Corsoy] (SB-M) was successfully cryopreserved in liquid nitrogen using a preculture and controlled freezing to −40° C (two-step) freezing method. The effective method included a preculture treatment with gradually increasing levels of sorbitol added to the 3% sucrose already present in the medium. The cells were then placed in a cryoprotectant solution [10% DMSO (dimethylsulfoxide) and 9.1% sorbitol, or 10% DMSO and 8% sucrose], incubated for 30 min at 0° C, cooled at a rate of 1° C/min to −40° C, held at −40° C for 1 h, and then immersed directly into liquid nitrogen. The cells were thawed at 40° C and then immediately placed in liquid culture medium. The cell viabilities immediately after thawing were 75% or higher in all cases where cell growth resumed. The original growth rate and chlorophyll level of the cells was recovered within 40 to 47 d. If the sorbitol level was not high enough or the preculture period too short, growing cultures could not be recovered. Likewise, survival was not attained with cryoprotectant mixtures consisting of 15% DMSO, 15% glycerol, and 9.1% sucrose or 15% glycerol and 8% sucrose. The successful method was reproducible, thus allowing long-term storage of this and certain other unique photosynthetic suspension cultures in liquid nitrogen.  相似文献   

11.
Aims: To determine the contamination levels of Cl. estertheticum spores that result in gaseous spoilage of vacuum‐packaged chilled meats, beef and lamb, stored at two different temperatures, ?1·5 and 2°C. Methods and Results: The study consisted of two separate trials using the same processing parameters applied to beef and lamb at two different storage temperatures and six different inoculation concentrations of Cl. estertheticum. A threshold for pack blowing of c. 1 spore per vacuum pack was seen with both beef and lamb stored at ?1·5 and 2°C. These results highlight the detrimental effect that increasing Cl. estertheticum spore inoculum concentration has on the onset of blown pack spoilage for both meat species stored at ?1·5 and 2°C. Conclusions: This study demonstrates that storage temperature is an extremely important parameter influencing the onset of blown pack spoilage and that storing meat at ?1·5°C significantly delays the onset of blown pack spoilage in comparison with storage at 2°C. Significance and Impact of study: The results of this study indicate that 1 Cl. estertheticum spore may present a risk of spoilage, and thus hygienic carcass dressing is critical to keep contamination to a minimum and maximize storage life of the vacuum‐packed chilled product.  相似文献   

12.
Protocorm-like bodies (PLBs) of Dendrobium candidum Wall. ex Lindl., orchid, were successfully cryopreserved using an encapsulation vitrification method. PLBs were precultured in liquid Murashige and Skoog (MS) medium containing 0.2 mg l−1 α-naphthalene acetic acid and 0.5 mg l−1 6-benzyladenine enriched with 0.75 M sucrose, and grown under continuous light (36 μmol m−2 s−1) at 25 ± 1°C for 5 days. PLBs were osmoprotected with a mixture of 2 M glycerol and 1 M sucrose for 80 min at 25°C and dripped in a 0.5 M CaCl2 solution containing 0.5 M sucrose at 25 ± 1°C and left for 15 min to form Ca-alginate beads (about 4 mm in diameter). Then, these were dehydrated with a plant vitrification solution 2 (PVS2) consisting of 30% (w/v) glycerol, 15% (w/v) ethylene glycol, and 15% (w/v) dimethyl sulfoxide in 0.5 M sucrose, pH 5.8, for 150 min at 0°C. Encapsulated and dehydrated PLBs were plunged directly into liquid nitrogen for 1 h. Cryopreserved PLBs were then rapidly re-warmed in a water bath at 40°C for 3 min and then washed with MS medium containing 1.2 M sucrose for three times at 10 min intervals. Within 60 days, plantlets with the cryopreserved PLBs developed normal shoots and roots, and without any observed morphological abnormalities, were obtained. The survival rate of encapsulated-vitrified PLBs was above 85%. Thus, this encapsulation-vitrification method was deemed promising for cryopreservation of PLBs of D. candidum.  相似文献   

13.
Plodia interpunctella is a major economic pest that commonly infests most stored and processed agricultural products. Currently, heating at 50–60°C for at least 48 h is applied in facilities for disinfestation. However, this condition requires a great deal of time and expense. To improve the control efficiency of this system, we conducted combined treatments with heating and diatomaceous earth (DE), which is known to be toxic to pest insects. The DE effect was compared to heating at 25°C or 40°C to wandering fifth instar larvae, which is the stage most tolerant to heat. When larvae were brushed with DE powder, mortality was only 15.0–18.3% at 25°C for 10 days, but rapidly increased to 100% at 40°C within 4 h post‐treatment. In addition, when larvae were kept in a plastic cage with DE [4 mg/L (w/v)], their mortality was 100% in 24 h at 40°C post‐treatment; otherwise mortality was only 8.8% without DE. Thus, the control efficiency of heating significantly improved with the combination of DE. These effects increased further at higher temperatures and with longer exposure. Our results clearly showed that DE treatment showed synergistic effects with heating systems for the control of P. interpunctella.  相似文献   

14.
Critical examinations were made on the conditions for preparing the sugar solutions to be analyzed by ion-exchange chromatography of sugar-borate complexes by the method of Khym and Zill. A procedure was proposed which gave the best recovery of sugars with minimum hydrolysis of sucrose. By means of this procedure, sugar solutions were prepared from potato tubers which had been stored at a high (30°C) or low temperature (6°C). Results of the chromatographic separation and determination of component sugars showed that main sugars present in potato tubers were sucrose, glucose, and fructose. Maltose and pentoses could not be detected. The contents of sucrose, glucose, and especially, fructose were far greater in potatoes stored at a low temperature than in those stored at a high temperature.  相似文献   

15.
The aim of this study was to determine if loss of germinability in Pyrus betulaefolia seeds stored at 4°C and at room temperature is associated with a loss of membrane lipid peroxidation or changes in antioxidant enzyme activities. The results indicated that germination percentage clearly decreased when seeds were stored at room temperature rather than at 4°C from 6 to 12 months. Room-temperature storage of the pear stock seed for 12 months decreased germination to 15.52%, but germination percentage was not changed when seed was stored at 4°C for 12 months. MDA, a marker for membrane lipid peroxidation, increased significantly under room-temperature storage conditions. Antioxidant enzyme (SOD, POD, and CAT) activities were a good indicator of germination percentage in pear stock seeds. Antioxidant enzyme activities of pear stock seeds at 4°C were higher than antioxidant enzyme activities in seeds stored at room temperature from 6 to 12 months. Antioxidant enzyme activities of the pear stock seed decreased markedly under conditions of room-temperature storage from 6 to 12 months. The results of this study showed that long-term room-temperature storage was detrimental for maintaining the vigor of P. betulaefolia seeds. The mechanisms responsible for this outcome are a higher level of membrane lipid peroxidation and a lower level of activity of antioxidant enzymes.  相似文献   

16.
Campylobacter jejuni represents one of the leading causes of bacterial enteritis throughout the world. Poultry is an important source of C. jejuni. Despite hygiene measures taken in the production chain, C. jejuni is frequently isolated from poultry meat. C. jejuni is a microaerophilic pathogen, affected by oxidative stress. Freeze-thaw treatment induces cell death by several mechanisms, including oxidative stress. In this article, we investigate the role of oxidative stress in C. jejuni sensitivity during and after a freeze-thaw treatment. This treatment results in dead and sublethally injured cells. The latter population might have an increased sensitivity to oxidative stress. To test this, cells were stored for another 24 h at 4°C under aerobic conditions and compared to cells that were not treated. C. jejuni survival was measured in different media (water, BHI broth, chicken juice, and chicken fillets) to test the environment protective effect. Different strains were tested, including sodB (encoding the superoxide dismutase) and cj1371 (encoding a periplasmic protein) mutants. Cell death was particularly important in water but similar in BHI, chicken juice, and chicken fillets. The sodB mutant was more sensitive to freeze-thaw treatment, suggesting that the killing mechanism involves production of superoxide anions. On the contrary, the cj1371 mutant was more sensitive to storage at 4°C, suggesting that it does not play a role in the detoxification of reactive oxygen species. Storage at 4°C after freeze-thaw treatment increases cell death of oxidative stress-sensitive populations. Sensitization to oxidative stress, freeze-thaw treatment, and further storage at 4°C could be a way to reduce C. jejuni populations on carcasses.  相似文献   

17.
In vitro-grown shoot tips of Emmenopterys henryi Oliv. were successfully cryopreserved by vitrification. Shoot tips excised from 3-month old plantlets were precultured in a liquid hormone-free Murashige and Skoog (MS) medium supplemented with 0.5 M sucrose for 3 days at 25°C and then treated with a mixture of 2 M glycerol plus 0.4 M sucrose (LS solution) for 40 min at 25°C. Osmo-protected shoot tips were first dehydrated with 60% vitrification solution (PVS2) for 30 min at 0°C and followed by 100% PVS2 for 40 min at 0°C. After changing the solution with fresh 100% PVS2, the shoot tips were directly plunged into liquid nitrogen. After rapid warming in a water-bath at 40°C for 2 min, the shoot tips were washed for 20 min at 25°C with liquid MS medium containing 1.2 M sucrose and then transferred onto solid MS medium supplemented with kinetin 2 mg l−1, α-naphthaleneacetic acid 0.1 mg l−1, 3% (w/v) sucrose and 0.75% (w/v) agar. The shoot tips were kept in the dark for 7 days prior to exposure to the light (12 h photoperiod cycle). Direct shoot elongation was observed in approximately 12 days. The regeneration rate was approximately 75–85%. This method appears to be a promising technique for cryopreserving shoot tips of Emmenopterys henryi Oliv. germplasm.  相似文献   

18.
To test the hypothesis that the up‐regulation of sucrose biosynthesis during cold acclimation is essential for the development of freezing tolerance, the acclimation responses of wild‐type (WT) Arabidopsis thaliana (Heynh.) were compared with transgenic plants over‐expressing sucrose phosphate synthase (over‐sps) or with antisense repression of either cytosolic fructose‐1,6‐bisphosphatase (antifbp) or sucrose phosphate synthase (antisps). Plants were grown at 23 °C and then shifted to 5 °C. The leaves shifted to 5 °C for 10 d and the new leaves that developed at 5 °C were compared with control leaves on plants at 23 °C. Plants over‐expressing sucrose phosphate synthase showed improved photosynthesis and increased flux of fixed carbon into sucrose when shifted to 5 °C, whereas both antisense lines showed reduced flux into soluble sugars relative to WT. The improved photosynthetic performance by the over‐sps plants shifted to 5 °C was associated with an increase in freezing tolerance relative to WT (?9.1 and ?7.2 °C, respectively). In contrast, both antisense lines showed impaired development of freezing tolerance (? 5.2 and ?5.8 °C for antifbp and antisps, respectively) when shifted to 5 °C. In the new leaves developed at 5 °C the recovery of photosynthesis as typically seen in WT was strongly inhibited in both antisense lines and this inhibition was associated with a further failure of both antisense lines to cold acclimate. Thus, functional sucrose biosynthesis at low temperature in the over‐sps plants reduced the inhibition of photosynthesis, maintained the mobilization of carbohydrates from source leaves to sinks and increased the rate at which freezing tolerance developed. Modification of sucrose metabolism therefore represents an additional approach that will have benefits both for the development of freezing tolerance and over‐wintering, and for the supply of exportable carbohydrate to support growth at low temperatures.  相似文献   

19.
This study aimed to determine the effects of Duddingtonia flagrans contained in sodium alginate pellets on trichostrongylide larvae under different storage conditions and durations. The in vitro predatory activity of D. flagrans in pellets against trichostrongylide larvae in sheep faeces were assessed at 0, 1, 3, 6, 9, and 12 months after the pellet was stored under four different conditions (i.e. ?20, 4°C, outdoors, and indoors). These results revealed that the numbers of larvae in faeces of sheep treated with pellets containing chlamydospores (treatment groups) were significantly lower than those in the control groups (without chlamydospores) for all trial months under four storage conditions for different durations (p?<?.05). The obtained reduction rates of the infective larvae (L3) in the four treatment groups ranged from 45.62% to 96.73% throughout the entire experiment. The overall mean L3 reduction percentages were 89.22%?±?3.74%, 88.97%?±?1.33%, 68.60%?±?14.31%, and 75.45%?±?13.18% for 4°C refrigeration, ?20°C refrigeration, indoor, and outdoor conditions, respectively. The pellets stored under these storage conditions for a year were provided to sheep for ingestion (in vivo test), and the results showed that the number of recovered larvae in sheep faeces at 24?h after ingestion were significantly lower than that before ingestion. For in vivo test, the L3 reduction percentage in the faeces was 90.99% (?20°C), 74.81% (outdoor), 83.53% (4°C), and 65.60% (indoor). Under the four storage conditions, D. flagrans spores contained in the pellets can maintain their survival ability to a varying degree in a year.  相似文献   

20.
Washed human erythrocytes were cooled at different rates from +37 °C to 0 °C in hypertonic solutions of either NaCl (1.2 m) or of a mixture of sucrose (40% wv) with NaCl (2.53% wv). Thermal shock hemolysis was measured and the surviving cells were examined for their mass and cell water content and also for net movements of sodium, potassium, and 14C-sucrose. The results were compared with those obtained from cells in sucrose (40% wv) initially, cooled at different rates to ?196 °C and rapidly thawed.The cells cooled to 0 °C in NaCl (1.2 m) showed maximal hemolysis at the fastest cooling rate studied (39 °C/min). In addition in the surviving cells this cooling rate induced the greatest uptake of 14C-sucrose and increase in cell water and cell mass and also entry of sodium and loss of cell potassium. A different dependence on cooling rate was seen with the cells cooled from +37 °C to 0 °C in sucrose (40% wv) with NaCl (2.53% wv). In this solution, survival decreased both at slow and fast cooling rates correlating with the greatest uptake of cell sucrose and increase in cell water. There was extensive loss of cell potassium and uptake of sodium at all cooling rates, the cation concentrations across the cell membrane approaching unity.The cells frozen to ?196 °C at different cooling rates in sucrose (40% wv) initially, also showed sucrose and water entry on thawing together with a loss of cell potassium and an uptake of cell sodium. More sucrose entered the cells cooled slowly (1.8 ° C/min) than those cooled rapidly (318 ° C/min).These results show that cooling to 0 °C in hypertonic solutions (thermal shock) and freezing to ?196 °C both induce membrane leaks to sucrose as well as to sodium and potassium. These leaks are not induced by the hypertonic solutions themselves but are due to the effects of the added stress of the temperature reduction on the membranes modified by the hypertonic solutions. The effects of cooling rate are explicable in terms of the different times of exposure to the hypertonic solutions. These results indicate that the damage observed after thermal shock or slow freezing is of a similar nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号