共查询到20条相似文献,搜索用时 0 毫秒
1.
T Kaya M Nishizawa T Yasukawa M Nishiguchi T Onouchi T Matsue 《Biotechnology and bioengineering》2001,76(4):391-394
A microbial chip for bioassay was fabricated and its performance was characterized by scanning electrochemical microscopy (SECM). The microbial chip was prepared by spotting a suspension of Escherichia coli on a polystyrene substrate by using a glass capillary pen. The respiration activity of the E. coli spot was imaged with SECM by mapping the oxygen concentration around the spot. The SECM images of the microbial chips clearly showed spots with lower reduction currents, indicating that E. coli in the spots uptake oxygen by respiration. The bactericidal effects of antibiotics (streptomycin and ampicillin) were measured using the E. coli-based microbial chip, and discussed in comparison with the minimum inhibitory concentration (MIC) determined by an agar plate dilution method. 相似文献
2.
Armando A. Diaz Emanuele Tomba Reese Lennarson Rex Richard Miguel J. Bagajewicz Roger G. Harrison 《Biotechnology and bioengineering》2010,105(2):374-383
In this article we present a new and more accurate model for the prediction of the solubility of proteins overexpressed in the bacterium Escherichia coli. The model uses the statistical technique of logistic regression. To build this model, 32 parameters that could potentially correlate well with solubility were used. In addition, the protein database was expanded compared to those used previously. We tested several different implementations of logistic regression with varied results. The best implementation, which is the one we report, exhibits excellent overall prediction accuracies: 94% for the model and 87% by cross‐validation. For comparison, we also tested discriminant analysis using the same parameters, and we obtained a less accurate prediction (69% cross‐validation accuracy for the stepwise forward plus interactions model). Biotechnol. Bioeng. 2010; 105: 374–383. © 2009 Wiley Periodicals, Inc. 相似文献
3.
Extracellular production of recombinant proteins in Escherichia coli has several advantages over cytoplasmic or periplasmic production. However, nonpathogenic laboratory strains of E. coli generally excrete only trace amounts of proteins into the culture medium under normal growth conditions. Here we report a systematic proteome-based approach for developing a system for high-level extracellular production of recombinant proteins in E. coli. First, we analyzed the extracellular proteome of an E. coli B strain, BL21(DE3), to identify naturally excreted proteins, assuming that these proteins may serve as potential fusion partners for the production of recombinant proteins in the medium. Next, overexpression and excretion studies were performed for the 20 selected fusion partners with molecular weights below 40 kDa. Twelve of them were found to allow fused proteins to excrete into the medium at considerable levels. The most efficient excreting fusion partner, OsmY, was used as a carrier protein to excrete heterologous proteins into the medium. E. coli alkaline phosphatase, Bacillus subtilis alpha-amylase, and human leptin used as model proteins could all be excreted into the medium at concentrations ranging from 5 to 64 mg/L during the flask cultivation. When only the signal peptide or the mature part of OsmY was used as a fusion partner, no such excretion was observed; this confirmed that these proteins were truly excreted rather than released by outer membrane leakage. The recombinant protein of interest could be recovered by cleaving off the fusion partner by enterokinase as demonstrated for alkaline phosphatase as an example. High cell density cultivation allowed production of these proteins to the levels of 250-700 mg/L in the culture medium, suggesting the good potential of this approach for the excretory production of recombinant proteins. 相似文献
4.
His tag effect on solubility of human proteins produced in Escherichia coli: a comparison between four expression vectors 总被引:2,自引:0,他引:2
Woestenenk EA Hammarström M van den Berg S Härd T Berglund H 《Journal of structural and functional genomics》2004,5(3):217-229
We have compared four different vectors for expression of proteins with N- or C-terminal hexahistidine (His6) tags in Escherichia coli by testing these on 20 human proteins. We looked at a total recombinant protein production levels per gram dry cell weight, solubility of the target proteins, and yield of soluble and total protein when purified by immobilized metal ion affinity purification. It was found that, in general, both N- and C-terminal His6 tags have a noticeable negative affect on protein solubility, but the effect is target protein specific. A solubilizing fusion tag was able to partly counteract this negative effect. Most target proteins could be purified under denaturing conditions and about half of the proteins could be purified under physiological conditions. The highest protein production levels and yield of purified protein were obtained from a construct with C-terminal His tag. We also observe a large variation in cell growth rate, which we determined to be partly caused by the expression vectors and partly by the targets. This variation was found to be independent of the production level, solubility and tertiary structure content of the target proteins. 相似文献
5.
Martínez-Alonso M García-Fruitós E Villaverde A 《Biotechnology and bioengineering》2008,101(6):1353-1358
Many enzymes or fluorescent proteins produced in Escherichia coli are enzymatically active or fluorescent respectively when deposited as inclusion bodies. The occurrence of insoluble but functional protein species with native-like secondary structure indicates that solubility and conformational quality of recombinant proteins are not coincident parameters, and suggests that both properties can be engineered independently. We have here proven this principle by producing elevated yields of a highly fluorescent but insoluble green fluorescent protein (GFP) in a DnaK- background, and further enhancing its solubility through adjusting the growth temperature and GFP gene expression rate. The success of such a two-step approach confirms the independent control of solubility and conformational quality, advocates for new routes towards high quality protein production and intriguingly, proves that high protein yields dramatically compromise the conformational quality of soluble versions. 相似文献
6.
Rapid methods using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry to monitor recombinant protein expression from various prokaryotic and eukaryotic cell culture systems were devised. Intracellular as well as secreted proteins from both induced and constitutive expression systems were measured and monitored from whole cells and growth media, thus providing an alternative to time-consuming traditional methods for screening and monitoring of protein expression. The methods described here involve minimal processing of samples and are therefore relevant to high-throughput screening applications. 相似文献
7.
Li Li Angela Kantor Nicholas Warne 《Protein science : a publication of the Protein Society》2013,22(8):1118-1123
Previous publications demonstrated that the extrapolated solubility by polyethylene glycol (PEG) precipitation method (Middaugh et al., J Biol Chem 1979; 254:367–370; Juckes, Biochim Biophys Acta 1971; 229:535–546; Foster et al., Biochim Biophys Acta 1973; 317:505; Mahadevan and Hall, AIChE J 1990; 36:1517–1528; Stevenson and Hageman, Pharm Res 1995; 12:1671–1676) has a strong correlation to experimentally measured solubility of proteins. Here, we explored the utility of extrapolated solubility as a method to compare multiple protein drug candidates when nonideality of a highly soluble protein prohibits accurate quantitative solubility prediction. To achieve high efficiency and reduce the amount of protein required, the method is miniaturized to microwell plate format for high‐throughput screening application. In this simplified version of the method, comparative solubility of proteins can be obtained without the need of concentration measurement of the supernatant following the precipitation step in the conventional method. The monoclonal antibodies with the lowest apparent solubilities determined by this method are the most difficult to be concentrated, indicating a good correlation between the prediction and empirical observations. This study also shows that the PEG precipitation method gives results for opalescence prediction that favorably compares to experimentally determined opalescence levels at high concentration. This approach may be useful in detecting proteins with potential solubility and opalescence problems prior to the time‐consuming and expensive development process of high concentration formulation. 相似文献
8.
To produce glucoamylase efficiently as a recombinant protein, E. coli was grown with 20 g (NH4)2SO4 l–1 which removed proteolytic activity but did not effect cell growth. Growth in M9 medium with 20 g (NH4)2SO4 l–1 produced 11 U glucoamylase ml–1 compared to 7 U ml–1 without addition. Furthermore, the glucoamylase activity was maintained at about 9 U ml–1. 相似文献
9.
AIMS: The thermal stability of isolated and extracted recombinant green fluorescent protein (GFPuv) was evaluated by analysing the loss of fluorescence intensity. METHODS AND RESULTS: GFPuv was expressed by Escherichia coli, extracted by the three-phase partitioning method and purified by elution through an hydrophobic interaction column. The collected fractions were further diluted in Tris-HCl-EDTA (pH 8.0) and subjected to continuous heating at set temperatures (45-95 degrees C). From a standard curve relating fluorescence intensity to GFPuv concentration, the loss of fluorescence intensity was converted to denatured GFPuv concentration (microg ml-1). To determine the extent of the thermal stability of GFPuv, decimal reduction times (D-values), z-value and energy of activation (Ea) were calculated. CONCLUSIONS: For temperatures between 45 and 70 degrees C, extracted native GFPuv activity decreased from 11 to 75% relative to initial native protein concentration above 70 degrees C, the average decrease in GFPuv fluorescence was between 72 to 83%. SIGNIFICANCE AND IMPACT OF THE STUDY: The thermal stability of GFPuv provides the basis for its potential utility as a fluorescent biological indicator to assess the efficacy of the treatment of liquids and materials exposed to steam. 相似文献
10.
As Escherichia coli (E. coli) is well defined with respect to its genome and metabolism, it is a favored host organism for recombinant protein production. However, many processes for recombinant protein production run under suboptimal conditions caused by wrong or incomplete information from an improper screening procedure, because appropriate on-line monitoring systems are still lacking. In this study, the oxygen transfer rate (OTR), determined on-line in shake flasks by applying a respiration activity monitoring system (RAMOS) device, was used to characterize the metabolic state of the recombinant organisms. Sixteen clones of E. coli SCS1 with foreign gene sequences, encoding for different target proteins, were cultivated in an autoinduction medium, containing glucose, lactose, and glycerol, to identify relationships between respiration activity and target protein production. All 16 clones showed a remarkably different respiration activity, biomass, and protein formation under induced conditions. However, the clones could be classified into three distinct types, and correlations could be made between OTR patterns and target protein production. For two of the three types, a decrease of the target protein was observed, after the optimal harvest time had passed. The acquired knowledge was used to modify the autoinduction medium to increase the product yield. Additional 1.5 g/L glucose accelerated the production process for one clone, shifting the time point of the maximal product yield from 24 to 17 h. For another clone, lactose addition led to higher volumetric product yields, in fact 25 and 38% more recombinant protein for 2 and 6 g/L additional lactose, respectively. 相似文献
11.
Arun Sivashanmugam Victoria Murray Chunxian Cui Yonghong Zhang Jianjun Wang Qianqian Li 《Protein science : a publication of the Protein Society》2009,18(5):936-948
The gram‐negative bacterium Escherichia coli offers a mean for rapid, high yield, and economical production of recombinant proteins. However, high‐level production of functional eukaryotic proteins in E. coli may not be a routine matter, sometimes it is quite challenging. Techniques to optimize heterologous protein overproduction in E. coli have been explored for host strain selection, plasmid copy numbers, promoter selection, mRNA stability, and codon usage, significantly enhancing the yields of the foreign eukaryotic proteins. We have been working on optimizations of bacterial expression conditions and media with a focus on achieving very high cell density for high‐level production of eukaryotic proteins. Two high‐cell‐density bacterial expression methods have been explored, including an autoinduction introduced by Studier (Protein Expr Purif 2005;41:207–234) recently and a high‐cell‐density IPTG‐induction method described in this study, to achieve a cell‐density OD600 of 10–20 in the normal laboratory setting using a regular incubator shaker. Several practical protocols have been implemented with these high‐cell‐density expression methods to ensure a very high yield of recombinant protein production. With our methods and protocols, we routinely obtain 14–25 mg of NMR triple‐labeled proteins and 17–34 mg of unlabeled proteins from a 50‐mL cell culture for all seven proteins we tested. Such a high protein yield used the same DNA constructs, bacterial strains, and a regular incubator shaker and no fermentor is necessary. More importantly, these methods allow us to consistently obtain such a high yield of recombinant proteins using E. coli expression. 相似文献
12.
Xie X Pashkov I Gao X Guerrero JL Yeates TO Tang Y 《Biotechnology and bioengineering》2009,102(1):20-28
Simvastatin is the active pharmaceutical ingredient of the blockbuster cholesterol lowering drug Zocor. We have previously developed an Escherichia coli based whole-cell biocatalytic platform towards the synthesis of simvastatin sodium salt (SS) starting from the precursor monacolin J sodium salt (MJSS). The centerpiece of the biocatalytic approach is the simvastatin synthase LovD, which is highly prone to misfolding and aggregation when overexpressed from E. coli. Increasing the solubility of LovD without decreasing its catalytic activity can therefore elevate the performance of the whole-cell biocatalyst. Using a combination of homology structural prediction and site-directed mutagenesis, we identified two cysteine residues in LovD that are responsible for nonspecific intermolecular crosslinking, which leads to oligomer formation and protein aggregation. Replacement of Cys40 and Cys60 with alanine residues resulted in marked gain in both protein solubility and whole-cell biocatalytic activities. Further mutagenesis experiments converting these two residues to small or polar natural amino acids showed that C40A and C60N are the most beneficial, affording 27% and 26% increase in whole cell activities, respectively. The double mutant C40A/C60N combines the individual improvements and displayed approximately 50% increase in protein solubility and whole-cell activity. Optimized fed-batch high-cell-density fermentation of the double mutant in an E. coli strain engineered for simvastatin production quantitatively (>99%) converted 45 mM MJSS to SS within 18 h, which represents a significant improvement over the performance of wild-type LovD under identical conditions. The high efficiency of the improved whole-cell platform renders the biocatalytic synthesis of SS an attractive substitute over the existing semisynthetic routes. 相似文献
13.
Self-cycling fermentation (SCF), a cyclical, semi-continuous process that induces cell synchrony, was incorporated into a recombinant protein production scheme. Escherichia coli CY15050, a lac(-) mutant lysogenized with temperature-sensitive phage λ modified to over-express β-galactosidase, was used as a model system. The production scheme was divided into two de-coupled stages. The host cells were cultured under SCF operation in the first stage before being brought to a second stage where protein production was induced. In the first stage, the host strain demonstrated a stable cycling pattern immediately following the first cycle. This reproducible pattern was maintained over the course of the experiments and a significant degree of cell synchrony was obtained. By growing cells using SCF, productivity increased 50% and production time decreased by 40% compared to a batch culture under similar conditions. In addition, synchronized cultures induced from the end of a SCF cycle displayed shorter lysis times and a more complete culture-wide lysis than unsynchronized cultures. Finally, protein synthesis was influenced by the time at which the lytic phase was induced in the cell life cycle. For example, induction of a synchronized culture immediately prior to cell division resulted in the maximum protein productivity, suggesting protein production can be optimized with respect to the cell life cycle using SCF. 相似文献
14.
Production of recombinant protein in Escherichia coli cultured in extract from waste product alga,Ulva lactuca 下载免费PDF全文
Tammy M. Rechtin Matthew Hurst Tom Potts Jamie Hestekin Robert Beitle John McLaughlin Peter May 《Biotechnology progress》2014,30(4):784-789
This study examined the potential for waste product alga, Ulva lactuca, to serve as a media component for recombinant protein production in Escherichia coli. To facilitate this investigation, U. lactuca harvested from Jamaica Bay was dried, and nutrients acid extracted for use as a growth media. The E. coli cell line BL21(DE3) was used to assess the effects on growth and production of recombinant green fluorescent protein (GFP). This study showed that media composed of acid extracts without further nutrient addition maintained E. coli growth and recombinant protein production. Extracts made from dried algae lots less than six‐months‐old were able to produce two‐fold more GFP protein than traditional Lysogeny Broth media. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:784–789, 2014 相似文献
15.
Protein insolubility is a major problem when producing recombinant proteins (e.g., to be used as antigens) from large cDNAs in Escherichia coli. Here, we describe a system using three convertible plasmid vectors to screen for soluble proteins produced in E. coli. This system experimentally identified any random cDNA fragments producing soluble protein domains. Shotgun fragments introduced into any of our three plasmids, which contain Gateway recombination sites, fused in-frame to the ORF of the protein tag. These plasmids produced N-terminal GST- and C-terminal three-frame-adaptive FLAG-tagged proteins, kanamycin-resistant gene-tagged proteins (which were pre-selected for in-frame fused cDNAs), or GFP-tagged fusion proteins. The latter is useful as a fluorescence indicator of protein folding. The Gateway recombination sites promote smooth conversion for enrichment of in-frame clones and facilitate both protein solubility assays and final production of proteins without the C-terminal tag. This high-throughput screening method is particularly useful for procedures that require the handling of many cDNAs in parallel. 相似文献
16.
17.
George HA Powell AL Dahlgren ME Herber WK Maigetter RZ Burgess BW Stirdivant SM Greasham RL 《Biotechnology and bioengineering》1992,40(3):437-445
Physiological effects of isopropyl-thiogalactopyranoside (IPTG) induction were examined in Escherichia coli strain JM109 expressing a fusion protein composed of transforming growth factor alpha and a 40-kD portion of Pseudomonas aeruginosa exotoxin A (TGF(alpha)-PE40) under control of the tac promoter. Fermentations at the 15-L scale in complex medium compared growth and metabolite profiles of the untransformed JM109 host strain, the strain transformed with the vector lacking the TGF(alpha)-PE40 open reading frame (JM109[pKK2.7]), and the strain with the complete plasmid for TGF(alpha)-PE40 expression (JM109[pTAC-TGF57-PE40]). Metabolite and growth profiles of JM109 (pTAC-TGF57-PE40) cultures changed significantly in IPTG-induced versus uninduced cultures. Prior to induction, glucose was metabolized to acetate or completely oxidized to CO(2). Following induction, pyruvate was also excreted in addition to acetate. In the absence of inducer, pyruvate was excreted by JM109 (pTAC-TGF57-PE40) only when dissolved oxygen levels fell to less than 10% of saturation (microaerobic rather than anaerobic conditions). The untransformed JM109 host strain or JM109 (pKK2.7) did not excrete pyruvate in the presence or absence of inducer, although JM109 (pKK2.7) exhibited a pattern of growth following addition of IPTG that closely resembled JM109 (pTAC-TFG57-PE40). Fermentations of JM109 (pTAC-TFG57-PE40) in a synthetic medium supported lower expression levels, but resulted in similar alterations in metabolite profiles. Induction in synthetic medium resulted in pyruvate excretion without further acetate accumulation. Taken together, these data suggest that one consequence of TGF(alpha)-PE40 expression in JM109 is altered patterns of pyruvate oxidation. (c) 1992 John Wiley & Sons, Inc. 相似文献
18.
Escherichia coli has been the host organism most frequently investigated for efficient recombinant protein production. However, the production of a foreign protein in recombinant E. coli often leads to growth deterioration and elevated secretion of acetic acid. Such observed phenomena have been widely linked with cell stress responses and metabolic burdens originated particularly from the increased energy demand. In this study, flux balance analysis and dynamic flux balance analysis were applied to investigate the observed growth physiology of recombinant E. coli, incorporating the proteome allocation theory and an adjustable maintenance energy level (ATPM) to capture the proteomic and energetic burdens introduced by recombinant protein synthesis. Model predictions of biomass growth, substrate consumption, acetate excretion, and protein production with two different strains were in good agreement with the experimental data, indicating that the constraint on the available proteomic resource and the change in ATPM might be important contributors governing the growth physiology of recombinant strains. The modeling framework developed in this work, currently with several limitations to overcome, offers a starting point for the development of a practical, model-based tool to guide metabolic engineering decisions for boosting recombinant protein production. 相似文献
19.
Hyper-acidic protein fusion partners improve solubility and assist correct folding of recombinant proteins expressed in Escherichia coli 总被引:1,自引:0,他引:1
High expression of recombinant proteins in Escherichia coli (E. coli) often leads to protein aggregation. One popular approach to address this problem is the use of fusion tags (or partners) that improve the solubility of the proteins in question. However, such fusion tags are not effective for all proteins. In this study, we demonstrate that the hyper-acidic protein fusion partners can largely enhance the soluble expression of target proteins recalcitrant to the efforts by using routine solubilising tags. This new type of fusion partners examined includes three extremely acidic E. coli polypeptides, i.e. yjgD, the N-terminal domain of rpoD (sigma 70 factor of RNA polymerase) and our preliminarily evaluated msyB. The target proteins used are highly aggregation-prone, including EK (the bovine enterokinase), TEV (the tobacco etch virus protease) and rbcL (the large subunit of tobacco ribulose-1,5-bisphosphate carboxylase/oxygenase). On removal in vitro and in vivo of the fusion tags by using yeast SUMO/Ulp1 reaction and TEV auto-cleavage, the resultant findings indicate the hyper-acidic fusion partners can function as intramolecular chaperones assisting in the correct folding of the target proteins. 相似文献
20.
Takuma Matsuoka Takuji Kawashima Tadashi Nakamura 《Bioscience, biotechnology, and biochemistry》2017,81(7):1401-1404
We previously found a novel chymotrypsin-like protease in honeybee, designated as HCLPase. The recombinant enzyme expressed in insect cells was produced and compared to that in Escherichia coli. Both enzymes showed equivalent molecular size and specificity. However, HCLPase produced in insect cells showed higher specific activity. The C-terminal cleavage sites of HCLPase were phenylalanine, leucine, and tyrosine residues. 相似文献